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Abstract: The ways in which languages have come to divide the visible spectrum with their color 
terminology, in both their variety and the apparent universal tendencies, are still largely unexplained. 
Building on recent work in modeling color perception and categorization, as well as the theory of 
signaling games, we incrementally construct a color categorization model which combines perceptual 
characteristics of individual agents, game-theoretic signaling interaction of these agents, and the 
probability of observing particular colors as an environmental constraint. We also propose a method of 
transparent evaluation against the data gathered in the World Color Survey. The results show that the 
model’s predictive power is comparable to the current state of the art. Additionally, we argue that the 
model we suggest is superior in terms of motivation of the principles involved, and that its explanatory 
relevance with respect to color categorization in languages is therefore higher. Our results suggest that 
the universal tendencies of color categorization cannot be explained solely in terms of the shape of the 
color space induced by our perceptual apparatus. We believe that only by taking the heterogeneity of 
the phenomenon seriously can we acquire a deeper understanding of why color categorization takes the 
forms we observe across languages.
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1  Introduction
The decades since the landmark work by Berlin and Kay1 have seen an immense research effort concerning 
the issue of color categorization, or naming, in the languages of the world. Are there universal patterns, 
or at least remarkable cross-linguistic tendencies, in how different languages categorize the spectrum of 
visible color by their “basic” color terminology? If so, how can we explain the existence of such patterns? 
For a long time, the discussion had been polarized between two opposing camps, the universalists (in 
particular, Paul Kay and colleagues) and the relativists (such as Barbara Saunders and John Lyons), who 
suggest different answers to both these questions.

The universalists defend the existence of variously strong universal patterns of color naming, from the 
firm implicational hierarchy of color terms as put forward by Berlin and Kay2, progressively mitigated later3, 

1 Berlin and Kay, Basic Color Terms: Their Universality and Evolution.
2 Ibid.
3 Kay, “Synchronic variability and diachronic change in basic color terms”; Kay and Maffi, “Color appearance and the 
emergence and evolution of basic color lexicons”.
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to weaker statements of non-randomly strong cross-linguistic patterns4. The more recent of these claims are 
based on the results of the World Color Survey5, whereby color naming data for 110 unwritten languages 
of 45 language families have been gathered. The explanations proposed by the universalists6 have been 
mainly in terms of the neurophysiology and psychophysics of color perception in human individuals, with 
the putative privileged status of black, white, red, green, yellow, and blue as the Hering primaries or the 
Fundamental Neural Response categories7.

The relativists, on the other hand, highlight the differences and peculiarities of color naming in particular 
languages and criticize the methodology behind the universalist findings, including the procedures of the 
World Color Survey8. There is also a related but distinct relativistic position with respect to color categories 
as a perceptual phenomenon, rather than as a sole matter of color naming9. As opposed to the perceptuo-
biological constraints on color categorization, relativists of this sort emphasize that the evolution of a color 
naming system is essentially a socio-cultural process, and they note that if there actually are strong cross-
linguistic patterns in color categorization, this may be caused partly by the history of language contact, 
notably by the influence of the Western colonial languages10.

What is clear from the empirical data is that there are cross-linguistic statistical regularities11, but 
that there is also a lot of variation. Intra-linguistic individual fluctuation is patently clear (more on 
this in Section  Per-language aggregation). And even in their strongest claims of universality, Berlin 
and Kay12 admit room for variation within some levels of their hierarchy13. The two camps each focus 
on the aspect of the data that supports their explanatory hypothesis. Around the turn of the century, 
many adopted the idea that it would take both perceptuo-biological constraints and cultural processes 
to explain the data14. Given the added difficulty of considering the effect and interaction of various 
constraints, this perspective has motivated the use of mathematical and computational models as 
exploratory tools.

One well known paradigm was introduced in Steels and Belpaeme’s case study15 on the evolution of 
shared color categories. They experiment with agent-based models that aim to capture adaptive processes 
of category formation under pressure for successful communication, incorporating nativist, empiricist, 
and culturalist assumptions in various degrees and exploring their implications within the models. Other 
agent-based models explore variations on the theme. Dowman16 drops the distinction between linguistic 
terms (shared) and concepts (internal to the agents) and uses Bayesian inference. Komarova, Jameson, 

4 See Kay and Regier, “Resolving the question of color naming universals”; Regier, Kay, and Cook, “Focal colors are universal 
after all”.
5 Kay et al., The World Color Survey; Kay and Cook, “World Color Survey”.
6 See Kay and McDaniel, “The linguistic significance of the meanings of basic color terms”; Kay and Maffi, “Color appearance 
and the emergence and evolution of basic color lexicons”; Kay et al., The World Color Survey.
7 For criticism, see Saunders and Brakel, “Are there nontrivial constraints on colour categorization?”; Jameson and D’Andrade, 
“It’s not really red, green, yellow, blue: an inquiry into perceptual color space”; Jameson, “Where in the World Color Survey 
is the support for the Hering primaries as the basis for color categorization?”; Ocelák, “The myth of unique hues”; Witzel, 
“Misconceptions about colour categories”.
8 Lyons, “Colour in Language”; Lucy, “The linguistics of “color””; Saunders and Brakel, “Are there nontrivial constraints on 
colour categorization?”; Saunders, “Revisiting Basic Color Terms”; Saunders “Towards a new topology of color”.
9 Roberson, Davies, and Davidoff, “Color categories are not universal: Replications and evidence form a stone-age culture”; 
Roberson et al., “Color categories: evidence for the cultural relativity hypothesis”.
10 See Saunders and Brakel, “Are there nontrivial constraints on colour categorization?”; Saunders and Brakel, “Colour: An 
exosomatic organ?”.
11 Jäger, “Natural color categories are convex sets”.
12 Berlin and Kay, Basic Color Terms: Their Universality and Evolution.
13 Stage III languages can differentiate either green or yellow, and Stage VII languages optionally carve out purple, pink, 
orange, or gray.
14 Among others, Dedrick, Naming the Rainbow: Colour Language, Colour Science, and Culture; and Dedrick, “Explanation(s) 
and the Patterning of Basic Colour Words Across Languages and Speakers”.
15 Steels and Belpaeme, “Coordinating perceptually grounded categories through language: A case study for colour”.
16 Dowman, “Explaining color term typology with an evolutionary model”.
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and Narens17 (and more recently Park et al.18) consider various learning mechanisms applied to a game of 
categorization based on the notion of a similarity range. Baronchelli et al.19 and Loreto, Mukherjee, and 
Tria20 try to reduce the innate constraints of the agents in a similar model, and argue that using a real feature 
of the human perceptual system (the so-called Just Noticeable Difference) is sufficient to generate results 
that exhibit some statistical properties that are close to the empirical data of the WCS. All of these models21 
introduce perceptual constraints upon individual agents, and make use of principles of dynamic linguistic 
interaction within communities of such agents, thus to some extent incorporating both the universalist and 
the relativist insights.

A similar paradigm is the framework of signaling games, a game-theoretic approach to modeling 
communication as anchored in convention, introduced by Lewis22 and later revived by Skyrms23 and other 
authors24. One big difference with the agent-based approach is that signaling game models can be studied 
at a higher level of abstraction via the use of population dynamics. These are abstract equations which 
purport to capture, at the population level, processes of biological or cultural evolution, but have also 
been shown to adequately represent the dynamics of some learning mechanisms. A model that investigates 
the issue of color categorization along these lines was introduced by Jäger and van Rooij25, and this is the 
paradigm followed in the implementation of the models presented here.

A later contribution in the universalist line by Regier, Kay, and Khetarpal26 dropped the problematic 
assumption of the privileged status of particular colors in human color perception, and suggested that the 
universal patterns can be explained in terms of optimal, efficient partitions of the perceptual space of color 
as such. One of the methods used to support their explanatory claim is a derivation of those partitions using 
an optimization procedure that maximizes a well-formedness measure based on perceptual constraints. 
Those constraints are induced by the location of the color represented by each Munsell chip in the CIELAB 
color space, which is supposed to capture the relations of similarity and difference between colors as 
perceived by a standard (that is, normal trichromatic) human observer. The optimization procedure is, 
however, admittedly artificial and does not purport to model the categorical formation process in a realistic 
way. Therefore, their perspective is compatible with the seemingly more realistic processes of linguistic 
interaction which lead to the emergence of categories in the models mentioned above. The connection 
between these two perspectives is more explicitly elaborated by Regier, Kemp, and Kay27.

From both these branches of color categorization modeling, we adopt the following implicit assumption: 
if a fairly realistic model can produce categorical schemes that fit well with the empirical color naming 
systems, then such a model can claim explanatory relevance with respect to the cross-linguistic patterns. 
An explanation of both regularities and variance in color categorization is not an aim in itself. It would, in 
turn, constitute an important contribution to the more general debate concerning the origins of concepts or 
categories in human cognition, the ancient “nature vs. nurture” debate28.

However, the explanatory claims of the existing models (in so far as they directly raise such claims) 
appear inconclusive to us. In each case, we feel that serious improvements can be made regarding one or 
both of the two crucial desiderata of any model that is to be explanatorily relevant: on the one hand, realism 

17 Komarova, Jameson, and Narens, “Evolutionary models of color categorization based on discrimination”.
18 Park et al., “The Evolution of Shared Concepts in Changing Populations”.
19 Baronchelli et al., “Modeling the emergence of universality in color naming patterns”.
20 Loreto, Mukherjee, and Tria, “On the origin of the hierarchy of color names”.
21 See Belpaeme, “Color Category Learning in Naming-Game Simulations” and Kallens, Dale, and Smaldino, “Cultural 
Evolution of Categorization” for more detailed overviews of the literature.
22 Lewis, Convention: A Philosophical Study.
23 Skyrms, Evolution of the Social Contract.
24 See Skyrms, Signals: Evolution, Learning, and Information; Huttegger, “How Much Rationality Do We Need to Explain 
Conventions?”; and Franke and Wagner, “Game Theory and the Evolution of Meaning”, for overviews.
25 Jäger and van Rooij, “Language structure: psychological and social constraints”.
26 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
27 Regier, Kemp, and Kay, “Word meanings across languages support efficient communication”.
28 For discussion of the conceivable positions within the dispute, see Steels and Belpaeme, “Coordinating perceptually 
grounded categories through language: A case study for colour”.
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of the principles involved; on the other, a transparent evaluation procedure allowing for the decision 
whether (or to what extent) the categorical systems produced by the model in question resemble the color 
naming systems actually observed in human languages.

In the present paper, we put forward a new color categorization model, in order to examine several 
explanatory ideas concerning the patterns of color categorization in the languages of the world. Our 
model, in its successive variants, preserves the general structure of the models referred to above. That is, 
we employ a dynamic, game-theoretic interaction above perceptual constraints motivated on the level of 
individual agents. We nonetheless believe we advance beyond the existing work, both in the respect of the 
model’s motivation and its evaluation. In the final stage, we also enhance the model with an additional, 
environmental constraint, namely with quasi-realistic probabilities based on the frequency of occurrence 
of each color in a natural environment. On a more general level, we hope in this paper to establish a 
transparent evaluation methodology that has so far been missing in color categorization modeling, and 
which will sharpen the very notion of a model’s predictive success. We believe the existing modeling 
approaches can and should provide results that are directly comparable to empirical data.

The paper is further organized as follows. In Section Evaluating color categorization models, we define 
our evaluation methodology and discuss the World Color Survey data that is used as its basis. In Section On 
the evolution of color categories. we formulate a color categorization model based on similarity-maximization 
signaling games. Our objective is to suggest a more naturalistic alternative to the categorical optimization 
used by Regier, Kay, and Khetarpal. In Section  Perceiving in full color, we introduce two incremental 
variants to our model, which are meant to improve upon the adequacy of its perceptual component. In 
Section Discussion we discuss the explanatory significance of our model (in its subsequent variants) with 
respect to the empirical patterns of color naming, and we outline the room for future improvements. We 
make our concluding remarks in Section Conclusion.

2  Evaluating color categorization models
As regards the original opposition between the universalists and the relativists, it needs to be noted that 
the tension is only partly mitigated by the fact that the more recent models tend to combine perceptual 
constraints with interactional ones. Another point of confrontation is what empirical data on color naming 
we should use in evaluating a model’s ability to produce realistic categorical systems. The standard 
option29 is to confront the model with the data provided by the World Color Survey30. But here it should 
be remembered that the relativists tend to question the relevance of these very data with respect to the 
problem at hand, suggesting that the universal patterns therein are at least partly caused, first, by the 
influence of the Western colonial languages, and second, by the methodology of the WCS, which is itself 
claimed to be universalist in nature. In our evaluation procedure, we try to assume a considered position 
between universalism and relativism. Namely, we make use of the data gathered in the WCS, notably and 
indisputably the most extensive cross-linguistic research ever performed on color naming; but instead of 
taking the data at face value, we clean and reduce them in several ways, so as to neutralize the most serious 
objections raised by the relativists.

We start this section by discussing the World Color Survey data and how we handle them for our evaluation 
purposes. Further, we describe the methods employed to compute the similarity of color categorization 
schemes, which will in turn help us quantify the predictive performance of a color categorization model. 
In order to illustrate the working of the proposed methods, we perform a quantitative reassessment of the 
model by Regier, Kay, and Khetarpal31. Finally, we define a clear methodology to evaluate the results of the 
models proposed later in this study.

29 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”; Baronchelli et al., “Modeling the 
emergence of universality in color naming patterns”; Loreto, Mukherjee, and Tria, “On the origin of the hierarchy of color 
names”.
30 Kay et al., The World Color Survey; Cook, Kay, and Regier, WCS Data Archives.
31 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
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2.1  The World Color Survey data

The World Color Survey32 investigated color naming in 110 unwritten languages of 45 language families. On 
average there were 24 informants consulted per language (the modal number was 25, although for some 
languages the number of informants was as low as 6). Each informant was presented 330 Munsell color chips 
in a fixed random order, and was asked to provide a short name in response to each. The 330 individually 
presented color chips belong to an array (hereafter, “the Munsell color array”, Figure 1) composed of 40 
chromatic hues (columns) at 8 levels (rows) of lightness33, plus a column of 10 achromatic chips from white 
to black. The Munsell color array, serving as a background, thus provides for convenient representation of 
the color categories in particular languages.

The relativist objections concerning the relevance of the color naming data provided by the World Color 
Survey are discussed in detail by Ocelák34, in part approvingly. The discussion results in several suggestions 
for a reduction of the body of the WCS data. It is meant to isolate a part of the data that can safely stand the 
relativist criticism and be considered representative of color naming in human languages, for the purpose 
of evaluating color categorization models. Our evaluation procedure makes use of the data available in 
the WCS Data Archives but diverges from the previous evaluation practice35 in reducing the data along two 
dimensions, prior to performing evaluation.

2.2  Language exclusions

Of the 110 languages covered by the WCS, we exclude the data on 29 languages, listed in Table 1, because 
of their arguable lack of representativeness with respect to the empirical phenomenon at hand. More 
specifically, we used the following two criteria:

1.	 We excluded 26 languages with a non-negligible presence of (detectable) loanwords in their color 
terminology; more specifically, a language was excluded if it was a creole, contained at least one 
loanword used by more than half of the respondents, or showed evidence of pressure from a different 

32 Kay et al., The World Color Survey; Kay and Cook, “World Color Survey”; Cook, Kay, and Regier, WCS Data Archives.
33 Each chip is on the maximal level of saturation that is available, for that particular hue-lightness combination, in the 
Munsell color order system (see Fairchild, Color Appearance Models).
34 Ocelák, “Carving up the rainbow: How to model linguistic categorization of color”, ch. 4.
35 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”; Baronchelli et al., “Modeling the 
emergence of universality in color naming patterns”; Loreto, Mukherjee, and Tria, “On the origin of the hierarchy of color 
names”.

Figure 1: The array of 330 Munsell color chips used in the World Color Survey. Reproduced from Cook, Kay, and Regier with 
authors’ permission. The figure is only for the sake of illustration; faithfulness to the standardized physical set of Munsell 
chips is generally not guaranteed with screening or printing devices.
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language on its color system (all according to the data and characteristics described by Kay et al.36). 
This is meant to do some justice to the relativist worry that the universal patterns in the WCS data may 
reflect the world-wide impact of the Western colonial languages, an accidental historical fact for which 
a categorization model cannot be expected to account.

2.	 We excluded 3 other languages based on apparent or suspected failures in the application of the 
standard WCS procedure in their case, and the following doubts regarding the reliability of the collected 
data. For Karajá, the data were elicited in a group setting, and are therefore probably significantly 
interdependent between individuals. The data on Cree and Didinga show several strong outliers 
surrounded by a different category in the 50% agreement array (see below); we consider it unlikely 
that a majority of respondents would agree upon naming of a single chip in the surround of another 
category if the standard WCS procedure had been followed, so we exclude these two languages as well.

We keep the remaining 81 languages.

2.3  Per-language aggregation

The available WCS data make it possible to retrieve, for each of the 330 chips of the Munsell color array, 
how that particular color was named by each individual speaker of each WCS language. Regier, Kay, and 
Khetarpal37, in their evaluation, represent the categorical system of a WCS language by what they call a 
“mode map”. In a mode map, each of the 330 chips is assigned to the category corresponding to the term 
which was used for naming of that chip by the highest number of speakers. It follows that each language is 
presented by its mode map as completely carving the Munsell array with its color categories. In contrast to 
Regier, Kay, and Khetarpal38, but in accordance with the “higher agreement arrays” by Kay et al.39, we do 
not assign a chip to a category unless a substantial percentage of the informants used the corresponding 
term in naming it. Consequently, we represent the categorical systems of languages with higher agreement 
arrays which typically contain “gaps”, that is, regions of chips that are not assigned to any category. Since 
we set the necessary level of agreement at strictly more than 50%, in the following we will call these 
higher agreement arrays “majority maps”. Figure 2 shows two examples of a majority map, namely for the 
languages with the lowest (5) and highest (250) number of missing data points. The median number of 
missing data points in our reduced subset of the WCS is 78, or approximately 23.6%. Majority maps for all 
languages in the WCS are available online40.

36 Kay et al., The World Color Survey.
37 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
38 Ibid.
39 Kay et al., The World Color Survey.
40 Correia, “WCS majority maps”.

Table 1: Excluded languages.

Reason for exclusion Languages

Spanish loanwords Agta, Aguacatec, Amuzgo, Cakchiquel, Camsa, Chinantec, Chiquitano, Garífuna, Huastec, Huave, 
Mazahua, Mazatec, Nahuatl, Tarahumara (Central), Tarahumara (Western)

Other loanwords Agta (Tagalog and English), Guaymí (probable English loanword), Gunu (probable loanword of 
unknown origin), Halbi (Hindi and probably Oryian), Yupik (English loanword)

Other linguistic 
interactions

Chavacano (Spanish creole), Djuka (Dutch creole), Kriol (English creole), Mixtec (pressure from 
Spanish), Saramaccan (English-Portuguese creole)

Potential 
methodological issues

Gunu (“local assistants of undocumented training”), Cree (suspicious outliers in the 50% agreement 
array), Didinga (suspicious outliers in the 50% agreement array), Karajá (group elicitation)
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This step responds to another relativist objection that seems pertinent to us, namely that the method 
of mode maps, by definition, presents any language as standardly categorizing color, regardless of the fact 
that some languages apparently do not have abstract color terminology at all, or have established color 
categories only in some regions of the color space. Our method of representation conservatively assumes 
that a color can be assigned to a linguistic category only when there is a sufficient agreement41 among 
speakers upon the naming of that color.

Note that, knowing the categorization made by each individual speaker of the World Color Survey, we 
could drop the abstract level of languages altogether and directly use the individual categorizations for our 
evaluative purposes. That would make the aggregation step described in this section unnecessary. However, 
that small theoretical gain would be more than balanced by the loss of comparability to other literature on 
color naming, and this approach would not spare us the problem of missing data (as discussed below). 
Moreover, the traditional notion of language has been involved in the very choice of WCS informants. We 
thus prefer keeping this notion in our analysis.

2.4  Quantitative measurement of color-naming scheme similarity

The problem presented to each subject going through the WCS data elicitation process can be seen as a 
simple categorization task: given a number of data points (s)he is to indicate which category each point 
belongs to, with data points being the 330 Munsell chips and categories being the salient color terms in 
their language. This is the same task that a (computational) model of color categorization should be able to 
perform in order to enable evaluation against the WCS empirical data. If a model generates an output in the 
same format, it is possible to evaluate it against a majority map by a measure of similarity.

41 Our setting of the necessary agreement at strictly more than 50% is arbitrary, apart from the fact that it is the lowest value 
that avoids the risk of having to assign a chip to one of more equally suitable categories.

Figure 2: Two examples of majority maps. Plots are created using the ‘ggplot2’ R package. Coloring is done automatically and 
in grey scale to avoid inadvertent connotations of native color terms to English ones.
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2.4.1 Computing cluster similarity

Although we talk about a categorization as the assignment of each Munsell chip to a color category, formally 
the data is equivalent to what would be called a clustering in the context of cluster analysis. Therefore, we 
searched the literature looking for a measure that we could employ to compare two categorizations. Vinh, 
Epps, and Bailey42 make an in-depth analysis of measures for the comparison of clusterings and suggest the 
use of a variant of the Normalized Mutual Information (NMI). They also stress the importance of correcting 
for chance “when the number of data items is relatively small compared to the number of clusters”43 and 
propose an adjusted form of the measure. Given that the number of data items in our case is 330 (Munsell 
chips) and the number of clusters is often over 3 (color terms), based on their indicative values44 we should 
use adjustment for chance.

Unfortunately, we were unable to find an efficient implementation of the adjusted NMI, and a naive 
implementation had prohibitive computational costs. Therefore, we resorted to using the Adjusted Rand 
Index45 (ARI) instead, which although not possessing all of the nice theoretical properties of the adjusted 
NMI, still works quite well and is a well-known and widely used measure of cluster similarity. The ARI takes 
into account the amount of both agreement and disagreement between two clusterings (ignoring category 
labels) to compute a number which is upper bounded by 1 and has an expected value of 0 for two random 
independent categorizations. It is, however, not lower bounded by 0 and can take negative values under 
certain conditions. An advantage of this measure is that it can be used even when the number of categories 
between two clusterings is different, allowing us to compare any two color categorization schemes. All 
calculations were performed in R46 using the implementation of the ARI in the ‘mclust’ package47.

2.4.2 Dealing with missing data

Given our decision to represent the categorical system of each language with a majority map, we are faced 
with an issue in the direct application of this measure of similarity. Namely, the ARI is defined assuming 
that each categorization is complete, i.e. that every data point is assigned to a category. However, when data 
points do not achieve a certain level of agreement, we represent them as missing data, thus not assigning 
them to any category. Since the ARI is computed based only on points that are well-defined in both 
clusterings, we can obtain somewhat misleading results with this measure. For example, the two languages 
shown in Figure 2 have an ARI of 0.79. This is a very high number, given that we assign no category to 
approximately 75% of the data points for Tifal.

Our solution to this problem is to perform a form of data imputation. Namely, the similarity between two 
categorizations is calculated by first generating a certain number of complete cases for each categorization, 
where data points with no assigned category are attributed one at random (uniformly selected from the 
existing categories), then calculating the ARI between each complete case for the first categorization and 
each complete case for the second categorization, and finally taking the median of those values. This 
procedure allows us to quantify the overall similarity more reliably since the intermediary ARIs are only 
calculated for complete categorizations. The similarity value thus obtained, henceforth called S, becomes 
0.05 between Wobé and Tifal, a much lower value than before.

42 Vinh, Epps, and Bailey, “Information Theoretic Measures for Clusterings Comparison: Variants, Properties, Normalization 
and Correction for Chance”.
43 Ibid., 2847.
44 Ibid., 2846.
45 Rand, “Objective criteria for the evaluation of clustering methods”.
46 R Core Team, R: A Language and Environment for Statistical Computing.
47 Fraley, Raftery, and Scrucca, mclust: Normal Mixture Modeling for Model-Based Clustering, Classification, and Density 
Estimation.
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2.4.3 Interpreting results

The approach has certain implications that one should be aware of when interpreting results. As was 
mentioned above, the ARI is designed to have an expected value of 0 when applied to random independent 
categorizations. Because categories are assigned to data points at random during the imputation process, S 
will be more biased towards 0 the more missing data points a language has. Going back to the examples in 
Figure 2, while the median similarity between Wobé and the rest of the languages in the corpus drops from 
0.58 to 0.32 when introducing imputation, for Tifal the drop is from 0.66 to 0.03.

We accept these consequences, since they reflect a conservative approach. Using this definition of 
similarity, a language with many missing data points is bound to have low similarity when measured 
against any other categorization system. If we insisted on the possible intuition that Tifal instantiates a 
categorization system similar to that of Wobé, notwithstanding the imperfect data, that would clearly invite 
the objection of undue universalism in assumptions. However, when interpreting a certain value of S, it can 
be useful to also look at the value of the ARI. Since the latter compares only defined data points, it can help 
one understand to what extent the value of S is influenced by the amount of missing data or a mismatch 
between known values. This will become clearer when we apply the metrics in practice in the following 
section.

2.5  Revisiting the results of Regier, Kay, and Khetarpal

In order to demonstrate the application of our quantitative evaluation method, we revisit part of the 
results of Regier, Kay, and Khetarpal48, namely what they call theoretically optimal color-naming schemes. 
These schemes are optimal, or maximally well-formed, in that they maximize the spatial compactness of 
categories, as measured in the perceptual color space CIELAB. In other words, they minimize the average 
perceptual distance of two chips within a category, and maximize the average perceptual distance of two 
chips from different categories. We will henceforth refer to these results as RKK-n, with n corresponding 
to the number of color categories. Therefore, RKK-3 is their theoretically optimal color-naming scheme for  
3 color categories, and so forth. These results are plotted in Figure 3.

We calculated our similarity measure S (using 100 complete cases per language for the imputation 
process) and the pure ARI between each result and each language in the WCS, as well as between each 
pair of languages in the WCS. Equipped with these quantitative results, we can revisit the first prediction of 
Regier, Kay, and Khetarpal49, namely that “[a]rtificially generated color-naming schemes that lie at global 
well-formedness maxima should resemble the natural color-naming schemes found in some of the world’s 
languages.” In Table 2 we present, per RKK result, similarity values for both the three WCS languages which 
rank highest in terms of S and the examples provided by Regier, Kay, and Khetarpal that are not in that 
group50. We emphasize in italics all the examples mentioned by Regier, Kay, and Khetarpal. In Table 3 we 
present the most similar WCS language according to our metric S for each of the WCS languages mentioned 
in Table 2. The full data is available online51.

First, we should observe that it is not always the case that the examples presented by Regier, Kay, and 
Khetarpal as WCS languages that resemble their simulations are the best matches according to our measure 
of similarity. One factor that certainly impacts this has to do with our use of majority maps with missing 
data, rather than mode maps. This can be corroborated by comparing the values of S with those of the 

48 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
49 Ibid., 1438.
50 We present the numbers for the additional languages given as examples of good matches by Regier, Kay, and Khetarpal for 
a matter of completeness. For RKK-6 we do not show numbers for Aguacateco since we chose to exclude this language from the 
data set, for reasons discussed in Section Language exclusions. Also, note that we compare each optimal color-naming scheme 
to all languages in the WCS, not only those with the same number of color terms. The reason is that there are also “residual” 
terms covering only a few of the 330 color points, which makes the groups of n-term languages not quite distinct.
51 Correia, “RKK results”.
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ARI. Most languages in the additional set have an ARI higher than some languages in our top 3. But then 
again, so does a language like Tifal with ARI values against RKK-3, RKK-4, RKK-5, and RKK-6 of respectively 
0.64, 0.77, 0.79, and 0.81. Given the lack of agreement among its speakers (see Figure 2 again), it would be 
rather bold to claim a good match with any RKK result. We can only be aware of such situations, we believe, 
by both taking into account the problem of intra-linguistic variation as we do with the missing data, and 
analyzing the problem equipped with a quantitative measure of similarity, rather than relying on visual 
comparisons.

In order to further put the numbers in perspective, we can compare them with numbers from real 
languages in the WCS. We may think of this as a pragmatic baseline for a theoretical color-naming scheme: 
if we conceive the scheme as a hypothetical language on its own, we can interpret its similarity to a given 
language in comparison with the similarity of other real languages to that language. This is of course 
dependent on how languages in the WCS compare to each other (we can imagine a situation of a loner 
language, totally different from all the others), but the point here is simply to contextualize the numbers for 
a simulation by providing further examples.

For RKK-3, 2 of the 3 best matching languages, namely Wobé and Ejagam, were presented by Regier, Kay, 
and Khetarpal52 as examples that visually appear to match their results well. The similarity of 0.48 between 
RKK-3 and Wobé might appear fairly good and lead us to the conclusion that RKK-3 adequately captures 
the solution achieved by this empirical language. However, we can note that, for example, the similarity 
between Wobé and Ejagam, which is the best WCS match for Wobé, is 0.71. Despite the apparent similarities, 
the difference between 0.48 and 0.71 indicates that there are also significant differences between RKK-3 and 
Wobé which are much less prominent between, say, Wobé and Ejagam. On visual inspection one would 
say that this has to do with the boundary of the term used in the “red” region being moved further into the 

52 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”, 1439.

Table 3: Most similar languages in the WCS corpus for languages figuring in Table 2.

Language S ARI

Wobé Ejagam 0.71 0.77
Ejagam Nafaanra 0.79 0.86
Bauzi Múra Pirahá 0.63 0.78
Bété Ejagam 0.66 0.92
Colorado Bauzi 0.60 0.85
Culina Vagla 0.41 0.74
Múra Pirahá Bauzi 0.63 0.78
Iduna Colorado 0.51 0.92
Cayapa Cofán 0.53 0.92
Ocaina Cofán 0.64 0.89
Cofán Ocaina 0.65 0.89
Buglere Zapotec 0.53 0.83

Table 2: Similarities between RKK results and some languages in the WCS.

RKK-3 RKK-4 RKK-5 RKK-6
Language S ARI Language S ARI Language S ARI Language S ARI

Top 3
Wobé 0.48 0.49 Wobé 0.37 0.38 Bauzi 0.43 0.50 Bauzi 0.45 0.51

Ejagam 0.39 0.41 Colorado 0.34 0.45 Colorado 0.40 0.54 Colorado 0.43 0.56

Additional

Bauzi 0.38 0.44 Bauzi 0.33 0.37 Múra Pirahá 0.40 0.44 Ocaina 0.38 0.46

Bété 0.35 0.48 Culina 0.32 0.50 Iduna 0.32 0.51 Cofán 0.38 0.47

Cayapa 0.31 0.54 Buglere 0.37 0.55
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“blue” region in the simulation results (an observation also made by Regier, Kay, and Khetarpal53), and with 
the “white” category being extended into the darker regions of the spectrum.

RKK-4 does not seem to be a very good representative of any WCS language in our reduced set, given the 
relatively low values of even the top three most similar languages and the significant differences between 
it and each of those languages. The best match is with Wobé again, at 0.37, substantially lower than the 
similarity value achieved by RKK-3 and much lower than the value between Wobé and Ejagam at 0.71. 
Culina, the only language presented by Regier, Kay, and Khetarpal54 as an example of a good match, ranks 
as the 4th most similar language at 0.32. If we look at the ARI value for this language, we understand why 
Regier, Kay, and Khetarpal present it as an example of a good match. Visually, it does appear closer to 
RKK-4 than Wobé in the tendency to center a separate category in yellow. Using our proposed metric S, this 
apparent similarity is attenuated because of the lower agreement among the speakers of Culina.

RKK-5 and RKK-6 have similarity values for their three most similar languages which are comparable 
to RKK-3 in absolute terms. The top two positions are occupied by the same two languages in both cases, 
Bauzi and Colorado. Both Bauzi’s and Colorado’s highest similarity (respectively, 0.63 against Múra Pirahá, 
and 0.60 against Bauzi) are significantly lower than the highest similarity for Wobé; the absolute values 
nonetheless indicate some significant differences. Visual inspection shows that RKK-5 overestimates 
(against Bauzi and Colorado) the size of the color categories centered in the “red/violet” and in the “yellow” 
region, and that RKK-6 does not quite capture the empirical solutions particularly in the “green” and “blue” 
regions.

Altogether, it may seem surprising that one language, Bauzi, can figure as one of 3 most similar WCS 
languages for each of RKK-3 to RKK-6, and that another, Colorado, achieves the same for three of these 
optimal schemes. The possibility of such a result follows from our method of measuring similarity. Bauzi 
and Colorado are both 5-term languages. Even if, by the same token, their similarity to a language with, say, 
4 or 6 terms cannot be perfect, they and such a language can still be fairly mutually informative as to how 
they split the color spectrum (at least in quantitative terms).

In conclusion, with quantitative data we can say with more confidence that the simulation results of 
Regier, Kay, and Khetarpal do indeed approximate some of the natural color-naming schemes, at least to a 
degree. However, we also observe that the approximation is still not at the same level as seen between some 
naturally occurring color-naming schemes.55

2.6  Evaluating models

The exploratory analysis in the previous section serves to demonstrate that, even when equipped with a 
quantitative measure of similarity, the assessment of a color categorization model based on the color-naming 
schemes it produces is a non-trivial task. Our particular stance towards the models that we introduce in this 
paper is that each simulation result should be seen as a color-naming scheme in its own right, albeit an 
artificial one. Each output is seen as a valid potential reflection of the assumptions put into the models. We 
produce many simulations per configuration, and consider all of them relevant. That further complicates 
the analysis.

The question can be phrased as follows. Given a model that produces artificial categorical partitions 
of the Munsell color array, and a method of determining the similarity between two arbitrary partitions 
(artificial or empirical, total or partial), how do we confront the set of partitions provided by the model with 
the empirically observed color-naming schemes, so as to assess the model’s predictive power?

53 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”, 1438.
54 Ibid., 1439.
55 Regier, Kemp, and Kay, in “Word meanings across languages support efficient communication”, repeat the experiment with 
a slightly adjusted procedure and obtain 4 new optimal color naming schemes which differ mildly from those discussed here. 
Given the illustrative character of this section, we do not inspect the results in similar detail here, but give an analogical table of 
achieved similarities in Appendix Additional results by Regier, Kemp, and Kay. In general, these new optimal schemes perform 
better for 5 terms, worse for 3 terms, and comparably for 4 and 6 terms.
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We do not expect the result of a particular simulation to be a good predictor for empirical categorical 
systems in general, as these can differ wildly from each other. Rather, a good simulation result is one that 
matches well with some of the existing languages, similarity with the others notwithstanding. For each 
simulation, we therefore focus on the maximal similarity achieved when compared with the 81 empirical 
languages in consideration.

Going beyond the level of assessing a particular simulation result, one could conceive of a model’s 
overall predictive success in terms of precision and recall. Achieving maximal precision would mean 
that each categorical system generated by the model would resemble an existing language. Maximal 
recall would be achieved when each of the existing languages would be reflected in a categorical system 
generated by the model. In practice, however, achieving both good precision and recall goes far beyond 
our expectations given the current state of the art. In the following, the particular stages of our model will 
be assessed primarily in terms of precision. That is, we ask how many of our simulations find a sufficiently 
similar counterpart among the WCS languages.

It needs to be emphasized that this is a method to compare the relative predictive power of different 
models, rather than a method of quantifying how good a model is in absolute terms. All our quantifications 
of the efficiency of a particular model are strictly relative to our sample of 81 WCS languages. Besides the 
obvious issue of how representative the sample is, note that if our particular sample were enlarged, the 
same simulations could be expected to reach higher maximal similarities on average.

Now that we have established a methodology to quantitatively assess the accuracy of color categorization 
models, let us bring forward our first proposal to increase realism in this kind of modeling, and evaluate its 
results accordingly.

3  On the evolution of color categories
Regier, Kay, and Khetarpal56 obtain their theoretically optimal color naming schemes by taking the best of 
20 runs of an algorithm whereby categories are formed through steepest ascent in well-formedness, starting 
from an initial random categorization. The authors do not claim this process models the actual evolution of 
color categories in human languages, in our opinion rightly so. Namely, the procedure explicitly operates 
with the distance of various colors in the perceptual color space, that distance being a rather abstract 
characteristic. An explicit knowledge of it cannot be assumed on the part of the language users, through 
whose communicative behavior language evolution proceeds. In our first proposal towards more realistic 
modeling of color categorization, we keep the perceptual setting of the model of Regier, Kay, and Khetarpal, 
namely by using the 330 color chips of the Munsell array represented in the perceptual color space CIELAB 
as the percepts to be categorized. However, we implement a more naturalistic process of forming categories, 
one that we believe better reflects how particular color naming systems of human languages may have 
emerged.

3.1  Proposal 1: Evolution of categories as dynamics of signaling

We formalize this process in game-theoretic terms using similarity-maximization signaling games 
(henceforth sim-max games for short), in the spirit of Jäger and van Rooij57. The idea is as follows:

1.	 “Nature” picks a point from the color space;
2.	 Based on this point, a sender chooses one message from a finite set and communicates it to a receiver;
3.	 The receiver then picks a point from the color space based on the signal received;

56 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
57 Jäger and van Rooij, “Language structure: psychological and social constraints”.
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4.	 This signaling interaction brings a payoff—which is a monotonically decreasing function of the distance 
in the color space between the receiver’s interpretation and the original point picked by “Nature”—to 
both sender and receiver;

5.	 Sender and receiver independently adjust their behavior for future interactions.

If we let the game be played repeatedly and relate payoffs from each particular interaction to the “fitness” 
of sender and receiver strategies, that is, to the probability that these strategies will be employed in the next 
interaction, we get an evolutionary process with a specific dynamic.

This process can be viewed as an idealized model of how color categorization might evolve in a 
community. The cognitive demands on any particular agent may be relatively low in this model: the agent 
only needs to be able to match perceived colors with linguistic terms, as well as terms with perceived 
colors, and to update the pattern of matching based on the communicative success achieved by her 
strategy as well as by other strategies in the game. The similarity of particular colors remains an objective 
perceptual characteristic, but nothing depends on whether the agent is able to report on it for two arbitrary 
colors, or whether she consciously reflects on color similarity at all. Instead, we assume a naturalistic 
connection between the perceptual dissimilarity of two colors and the importance of distinguishing them 
in communication, which is reflected in the payoff function.

Of course, the level of idealization is high. We certainly do not claim that the existing color naming 
systems have actually evolved by routine repetition of game-like language exchanges within one 
homogeneous generation of speakers. We nonetheless believe that the principles involved in our model 
have played a major role in the evolution of color naming systems, whatever the time span and the social 
setting in which the actual process took place.

3.2  The model

Let us go into a more detailed formulation of the model. We use the chips of the Munsell array, with 
coordinates in the perceptual color space CIELAB, as the set of percepts, as is done by Regier, Kay, 
and Khetarpal58. This constitutes our state space, thus composed of 330 points, which can be indexed 
by hue (levels from 0 to 40) and lightness value (10 levels for the achromatic chips, 8 for the others) 
or by coordinates in the CIELAB space L, a, and b. We use the mapping from hue and value to CIELAB 
coordinates provided with the WCS data59. For illustration purposes, this state space is plotted in 
Figure 4.

Given the CIELAB coordinates, the distance between two points in the state space x1 = 〈L1, a1, b1〉 and  
x2 = 〈L2, a2, b2〉 is simply given by their Euclidean distance, i.e.:

− +( − ) +( − )x ,x L L a a b bdist ( ) = ( )
1 2 1 2

2
1 2

2
1 2

2

The state space is thus effectively a subset of the CIELAB color space. As is done by Regier, Kay, and 
Khetarpal (2007), on top of this we define a similarity metric as:

=
−x ,x e ,sim( ) c dist x x

1 2
· ( )

1 2
2

To be in line with their work, we use c = 0.001 for all simulations. Practically, this means that the similarity 
is decreasing almost linearly from 1 at distance 0 to about 0.8 at distance 50, and is virtually 0 for distances 
above 80. The sim-max game is characterized by the tuple 〈T, Pr, M, U 〉 where T is the perceptual space 

58 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
59 Obtained from: http://www1.icsi.berkeley.edu/wcs/data/cnum-maps/cnum-vhcm-lab-new.txt.
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described above, Pr : ∆(T) is the prior probability distribution over T, M is the set of messages available, 
and U : T × T → R is the utility function for both sender and receiver (we assume “cheap talk”, i.e. there are 
no message-dependent costs60). We define only one utility function for both sender and receiver, thus we 
assume perfectly cooperative interests of both. Utility is equated with similarity: U(x1,x2) = sim(x1,x2). Unless 
otherwise stated, by default we use a uniform Pr, i.e. each point in the state space is a priori equally likely 
to be selected by “Nature”.

Regarding game dynamics, we use the discrete-time replicator61. This equation was conceived to 
capture, in abstract terms, differential reproduction, that is, the idea that an individual’s relative success 
in a population will have an impact on the likelihood that his traits are passed on to a new generation. 
This is a key notion in the theory of evolution and the replicator equation is the formalization most 
widely used in evolutionary game theory. The mathematical formulation is, however, agnostic of 
interpretations, and it can also be seen as capturing differential imitation, which is a form of cultural, 
rather than biological, evolution62. When it comes to linguistic categorization, we are thus not claiming 
that the process of its evolution is tied to biology. It is a process where linguistic behaviors are selected 
with respect to how well they enable communication, and this happens by individuals adopting and 
favoring more successful strategies in place of less successful ones, not by passing actual genes on to 
biological generations.

Given that we are modeling differential imitation, rather than differential reproduction, we will 
use behavioral strategies. The main difference between these and mixed strategies is that, whereas 
a mixed strategy associates probabilities to whole pure strategies, a behavioral strategy associates 
probabilities to the set of possible choices (messages for senders, actions for receivers) at each choice 
point (states for senders, messages for receivers). This allows a behavioral strategy to evolve locally, 
at each choice point, which is more plausible if we are modeling imitation: an agent does not need 
to know the whole strategy of another to adopt his behavior for a given state, if that appears more 
successful. Formally, a sender strategy σ : T → ∆(M) associates with each point in the state space a 
probability distribution over the set of messages. A receiver strategy ρ : M → ∆(T) associates with 
each message a probability distribution over all points in the state space. Probability values can be 
interpreted as representing our uncertainty about an agent’s behavior, an actual stochastic behavior, 
or percentages of a hypothetical population. In the context of this work, the latter is the most natural 
interpretation: think of σ(x1,m1) = 0.7 as representing that “70% of the population uses message m1 
when observing point x1”.

Replicator dynamics update the behavioral sender and receiver strategies according to their expected 
utility. The state of each strategy at time instant t + 1 is defined as follows:

60 See Stalnaker, “Saying and meaning, cheap talk and credibility”.
61 Taylor and Jonker, “Evolutionarily Stable Strategies and Game Dynamics”.
62 Skyrms, Signals: Evolution, Learning, and Information, 55.

Figure 4: Different state spaces used in our models: the first is based on the Munsell array, the others are based on an esti-
mate of the visible spectrum by Masaoka et al.; the first two have uniform priors, whereas the third has more realistic priors 
(closer to red indicating higher probability here). Given that state spaces are three-dimensional, these plots can never provide 
a full picture of the state spaces. They only serve to illustrate differences in shape and prior probabilities between them. The 
full data is available online (Correia, “COM State Spaces”).



� Towards More Realistic Modeling of Linguistic Color Categorization     175

∑
σ σ

ρ

σ ρ
= ×

′ × ′
σ

σ

+

′∈

x,m x,m
x,m,

x,m x,m ,
( ) ( )

EU ( )

( ) EU ( )t t
t

t
m M

t

1

∑
ρ ρ

σ

ρ σ
= ×

′ × ′
ρ

ρ

+

′∈

m,x m,x
m,x,

m,x m,x ,
( ) ( )

EU ( )

( ) EU ( )t t
t

t
x T

t

1

where expected utilities are defined as:
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3.3  Results

Using the model described above, we ran 20 simulations63 for 3, 4, 5, and 6 messages. Starting 
conditions σ0 and ρ0 are initialized with random values for every simulation. All simulations ran until 
a convergence criterion was met. Namely, simulations were stopped when the total absolute change 
in both sender and receiver strategy was under 1%, i.e. ∑ ∑ σ −σ <

∈ ∈ +
x m x m| ( , ) ( , ) | 0.01

x T x M t t1
 and 

ρ ρ∑ ∑ − <
∈ ∈

m x m x| ( , ) ( , ) | 0.01
m M x T t t+1

. Implementation of the model, code to run the simulations, and 
data analysis scripts are available online64.

The part of the final state of a simulation that is used for evaluation is the sender strategy, which 
represents the task we are focusing on: assigning linguistic categories to colors. Given the interpretation 
of probabilities in the strategies described above, one can simply produce a majority map directly from 
the information in the sender strategy, much in the same way that is described for the WCS languages 
in Section Per-language aggregation. In practice, the majority maps obtained for our simulation results, 
unlike the majority maps for WCS languages, contained no gaps or missing data at all. The full data is 
available online65.

With notation similar to that used by Regier, Kay, and Khetarpal, we denote these results as 
COM1-n.i, where n is the number of messages and i an incremental index to identify each result66. As 
discussed in Section Evaluating models, we will focus on analyzing the precision of the model in terms 
of the maximal similarity of each simulation result against the WCS languages. Furthermore, we will 
use the results of Regier, Kay, and Khetarpal67 and the discussion in Section Revisiting the results of 
Regier, Kay, and Khetarpal, as something of a baseline and a point of reference68. In Figure 5 we plot 
histograms of the maximal similarities obtained, as well as the value obtained by RKK’s optimal color-
naming scheme.

What these plots show is that for each value of n there is at least one color-naming scheme whose 
maximal similarity value is higher than the maximal similarity achieved by Regier, Kay, and Khetarpal. 

63 This number was chosen simply to be in line with Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of 
color space”. Although a study of the impact of this choice in the results could be performed, it would be outside the scope of 
this paper.
64 Correia, “COM model and data analysis scripts”.
65 Correia, “COM1 results”.
66 The M in COM stands for Jan Mašek, who also contributed to our work. See the Acknowledgments section at the end of the 
paper.
67 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
68 Note that we are comparing 20 of our runs against 1 of theirs, which is admittedly problematic. Ideally we would use all of 
their results, but we do not have access to them. Therefore, we would like to stress that this comparison is not fully conclusive.



176   J. P. Correia and R. Ocelák

Figure 5: Histogram of maximal similarities of the resulting color-naming schemes of the first variant of the model: COM1. 
Solid line corresponds to a 1d kernel density estimate as produced with default parameters by the ‘ggplot2’ R package. 
Dashed line indicates the value obtained by RKK.

For 3, 5, and 6 terms, exactly one of 20 simulations outperforms their optimal scheme. On the face of it, 
this can be thought to be related to the fact that they obtain their optimal schemes as the best result of 
the 20 runs of their optimization algorithm, for each number of terms. It could indicate that, in terms 
of generating categorization schemes, sim-max games provide a valid alternative to the optimization 
procedure. However, the resemblance may be also accidental and misleading, and we should be careful 
in making such a claim. In the work of Regier, Kay, and Khetarpal only one trial result per number of 
terms is reported, and it is not selected based on our measure of similarity. Given that optimality (in the 
authors’ sense) and similarity with WCS languages are not necessarily correlated, we cannot discard the 
possibility that in the 19 unreported trials there were some that were less theoretically optimal, but more 
empirically successful.

That could be related to why, for 4 terms, our procedure outperforms their optimal scheme in about half 
of the 20 cases, instead of just one. Their optimal scheme, with the “red” term extended into the blue region 
and with the vast “yellow” term reaching from reddish orange to yellowish green, does not find a very good 
counterpart in our WCS sample. Some of our simulations apparently do, without necessarily reaching the 
same level of theoretical optimality. Inspecting the results up close reveals that many simulation outcomes 
have Múra Pirahá as their most similar language in the WCS. This is a language that has 4 color terms, but 
rather than having a term covering the yellow region of the space, it has one covering the green and blue 
region, much like our second highest scoring result (see Figure 6). Interestingly, our model also produced 
color-naming schemes that are similar to RKK-4, including the ones ranking first and third in maximal 
similarity values.

The fact that our model can produce results that are at least on par with those of Regier, Kay, and 
Khetarpal means that sim-max games are not only a more plausible mechanism to explain the evolution 
of linguistic color categorization, but also one that makes reasonable predictions. However, both these 
aspects are far from perfection. Looking at the low end of the maximal similarity values, we find that many 
simulation results are not a good representative of any WCS language. Furthermore, some principles and 
assumptions behind the model are still far from realistic. In the following section we present more proposals 
to improve on the theoretical foundations of our model; more specifically, we reconsider the perceptual 
constraints on the above described game-theoretic interaction.
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4  Perceiving in full color
Regier, Kay, and Khetarpal present their work as an elaboration of the proposal by Jameson and 
D’Andrade69 that the universal tendencies of color naming could be explained in terms of efficient 
divisions of the irregularly shaped perceptual space of color. However, what is actually partitioned in 
their model, as well as in our own previous proposal, is not very close to the actual spectrum of colors 
that humans can perceive. Rather, the models provide categorical partitions of the figure that results 
when the 330 chips of the Munsell array are represented in CIELAB. The figure has roughly the shape 
of the surface of a bumped sphere plus a middle axis formed by the achromatic chips from white to 
black (see Figure 4). The relevance of this irregular figure with respect to the problem at hand seems 
limited in at least two respects. First, the set of points is neither representative of the full range of 
the visible spectrum, as per state-of-the-art research in color perception, nor does it cover the whole 
Munsell color system evenly, using only hue-value pairs at maximum saturation. Second, it does not in 
any way reflect the natural distribution of colors, i.e. how likely humans are to observe one color more 
often than the other.

As an instrument of the WCS, the Munsell array provided for the collection of invaluable evidence 
about color naming in human languages, and we will keep evaluating the outcomes of our model against 
this data. More specifically, we will represent any simulated partition of the color space in terms of how it 
would divide the Munsell figure, and compare these divisions to the categorical systems actually observed 
in the WCS. However, for the first reason stated above, it is not clear why efficient divisions of that particular 
figure should have any explanatory value with respect to the evolution of color categorization in languages. 
In order to examine the hypothesis by Jameson and D’Andrade70, we need to consider categorical partitions 
of the full spectrum of colors visible to humans, or at least a better approximation thereof.

69 Jameson and D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space”.
70 Ibid.

Figure 6: A 4-term WCS language with a term in the green region, and a similar result from the first variant of our model.
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4.1  Proposal 2: A more realistic perceptual space

Professor Albert H. Munsell devised his color order system in the early 20th century and its subsequent 
improvements took place in its first half. The abundant use of the Munsell array in the past color naming 
research derives from the popularity of Berlin and Kay71, who in turn follow Lenneberg and Roberts72 in 
this. Since Munsell’s times, however, many advances have been made in the scientific understanding and 
characterization of human color perception, notably the formulation of the CIE XYZ system in 1931, of the 
CIELAB and CIELUV color spaces in 1976, and more recently of the color appearance model CIECAM0273. As 
noted above, we acknowledge the function of the Munsell array as a tool of empirical description. We, however, 
deprive it of the explanatory function it has been given in the previous models. The Munsell figure (the result of 
representing the array in the CIELAB color space) thus ceases to be the body which is primarily to be partitioned 
in our simulations. We are then looking for a more up-to-date approximation of the spectrum of visible color.

Masaoka et al.74 investigate the problem of estimating the number of human-discernible colors in light of 
state-of-the-art research in color perception. They produce estimates along various color models and several 
illumination conditions. Although they conclude that “the number of discernible object colors remains a 
conundrum”75, for the purposes of our modeling efforts, their estimates are a major step up in realism. 
Where they are concerned with calculating very accurate numbers, we merely require a representation of 
the spectrum of visible colors that is closer to reality than what was previously used. We understand and 
acknowledge the dimensions of variation that condition the estimation of the shape of the visible spectrum, 
from the theoretical limitations of our understanding (reflected in different models and representation 
techniques), to the choice of a model’s particular variant based on specific viewing conditions, or even the 
inter-individual differences in visual abilities. However, for the sake of simplicity we will bite the bullet and 
make some pragmatic choices in order to focus on the problem at hand.

With that in mind, we used one of the estimates of the boundaries of the visible spectrum calculated 
by Masaoka et al. and reconstructed a color solid that could fit our modeling purposes. Namely, we took 
their estimate in the CIELAB space for the 6500K illuminant76 (a good approximation of the daylight of a 
sunny day) and calculated a grid of points, with minimum distance 10 in each dimension, that would fit 
those boundaries. The result is a set of 2296 points ranging from 5.5 to 95.5, −160 to 130, and −120 to 140, 
respectively in the L, a, and b dimensions (see Figure 4). Contrast this with the state space based on the set 
of Munsell chips, which consists of 330 points ranging from 15.6 to 96, −63.28 to 61.57, and −49.63 to 109.12, 
respectively in the L, a, and b dimensions. Clearly, according to more up-to-date estimates, there is much 
more to the spectrum than what the Munsell array can capture.

Regarding the concrete model presented in Section  The model, the change we propose is simply to 
replace state space T. All formulations of the sim-max game are generic and thus remain the same. The 
change has an impact in evaluation: since T is no longer the Munsell array, a sender strategy σ : T → ∆(M) 
can no longer be used to directly map the array to categories. The solution we chose was to reconstruct 
a categorization for the Munsell array that represents a given sender strategy by taking, for each of the 
330 Munsell points, the category assigned by that strategy to the point of the 2296 which is most similar 
to the Munsell point in the CIELAB space. Formally, we can think of it as follows. Let TM be the state space 
based on the Munsell array and TS the new state space we are proposing. Rather than producing a majority 
map from σ : TS → ∆(M) we produce it from a strategy σ′ : TM → ∆(M), where for t ∈ TM:

σ σ( ) ( )′ ′














′∈
t t,t= arg max sim

t T
s

71 Berlin and Kay, Basic Color Terms: Their Universality and Evolution.
72 Lenneberg and Roberts, “The language of experience: A study in methodology”.
73 See Fairchild, Color Appearance Models.
74 Masaoka et al., “Number of discernible object colors is a conundrum”.
75 Ibid., 275.
76 Ibid., see first row, third column of Figure 10.
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Despite the added realism, this change to the model by itself does not make it perform very well. We will 
discuss the results in more detail in Section Results. Given our confidence that the change in state space is 
justified, we looked for additional important ingredients that could be missing. Naturally, there are many 
aspects that could be pushed to greater realism. From the options we considered, the frequency with which 
various colors occur in the natural environment was the one we felt could be taken into account with the 
greatest degree of objectivity.

4.2  Proposal 3: Environment matters

In a realistic reflection of the phenomenon of color perception and categorization, it not only matters 
which colors we are able to see, but also which colors we actually see and how often. The model 
introduced in Section The model is actually already prepared to accommodate this information in the 
prior probability distribution Pr: ∆T, which encodes the likelihood of each point of the state space 
actually being observed. This influences the expected utility of the receiver strategy, which in turn plays 
a role in the evolutionary dynamics, thus having a potential impact on the development of the system 
as a whole.

All we need is to estimate the prior probability distribution of the state space. For this purpose, we use 
images of natural scenes available in the McGill Calibrated Colour Image Database77, taking all images from 
each of the available categories. We randomly sample a number of individual pixels from these images, 
associate each of the CIELAB coordinates of the color represented by these pixels with the closest point in 
our state space, and build a frequency distribution of the latter. This of course slightly distorts the underlying 
continuous probability and can in practice never cover each and every point, so in order to smooth it out 
we perform a convolution of the frequency distribution with a negatively decaying distribution based on 
the normalized distance function. Mathematically, the implementation can be expressed as follows, where 
F is the frequency distribution, dist the distance function normalized for the state space to range from 0 to 
1, and λ a smoothing factor:

x = F x x,xPr 1 dist
x T
∑ ( )( ) ( ) ( )× − ′

′∈

λ

Intuitively, what happens is that the prior probability of each point in the state space is influenced by the 
frequency distribution of all points (including itself), inversely weighted by their distance to it: the closer 
another point is, the more its frequency will influence the first point’s prior probability. We explored several 
possible values for λ and pragmatically settled on λ=10, since it seemed to provide a reasonable amount of 
smoothing without distorting the frequency distribution too much. Naturally, an infinite number of other 
values could be used and we have no principled reason for this choice, but a full-fledged exploration of the 
impact of this parameter on the results of the model would deviate too much from the main questions at 
hand. An illustration of the outcome is presented in Figure 4.

We thus derive a quasi-realistic probability of each color being picked by “Nature” in any particular 
round of the sim-max game. The attribute “quasi-realistic” is meant to indicate that we are in no way aiming 
at full-fledged realism in this respect: for that, one would need a faithful representation of the various 
natural environments concerned, consider various lighting conditions, etc. Our point rather is that we 
increase the realism of a particular modeling component, even if quite imperfectly, and see the impact of 
this change upon the model’s predictive power. Note that the default, uniform probabilities, which have 
been used in the previous stages, were themselves an arbitrary choice.

77 Olmos and Kingdom, “A biologically inspired algorithm for the recovery of shading and reflectance images”.
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4.3  Results

As was done for COM1, the first variant of the model proposed in Section On the evolution of color categories, 
we ran 20 simulations for 3, 4, 5, and 6 messages for each of the other two variants. The full data is available 
online78. In order to provide some concrete illustration, in Figure 7 we present the simulation results that 
achieve the highest similarity values for each COM3-n.

Although we place more emphasis on quantitative evaluation than on visual impressions, some of these 
schemes have issues when it comes to dividing the spectrum in the ways that are familiar from existing 
languages. For instance, COM3-3.6 does not display the categories of black/dark and white/light, and COM3-
4.20 has no dedicated category around red. The similarity values should not make us expect much more. 
Especially when put into context and compared with some similarities of languages within the WCS (see 
Table 3 again), they are not very high. More than in these particular results, we are interested in general 
trends and the relative impact of each modification to the model.

Figure 8 plots the distributions of maximal similarities achieved by the 20 runs of each variant of the 
model.

The plots make clear that COM1 is the model that achieves the highest similarity values against the WCS 
languages, especially for 3 and 4 terms. As was mentioned in Section Proposal 2: A more realistic perceptual 
space, COM2 achieves a generally lower performance. However, the simple addition of the quasi-realistic 
probabilities to the state space seems to have a very positive impact on the model’s predictive performance, 
as seen by the distributions of the COM3 results. A statistical analysis (see Appendix Statistical comparison 
of COM1, COM2, and COM3 for the details) supports these subjective observations.

In conclusion, replacing the Munsell array with a more realistic state space hurt the model’s predictive 
power, but adding an environmental ingredient in the form of more realistic priors improved its performance 
again. This, we believe, is evidence that environment also matters and that we have to take into account 
the contribution of various factors if we are looking for a more complete explanation of the patterns of 
color categorization observed in real-world languages. We are, however, not there yet, as witnessed by the 
absolute similarity values as well as our very visual inspection of the simulations results.

5  Discussion
In this section, we discuss the significance of our model and its results, as well as a number of factors that 
we have abstracted away from, but which arguably should be taken into account in a more comprehensive 
approach to the color categorization phenomenon. Furthermore, we review the pragmatic choices that had 
to be made in various stages of our project, making the model more open to possible reconsideration.

5.1  Significance of the results

As has been stated already, a general ambition of the present paper is to elaborate on the very notion 
of satisfactory explanation in the domain of color categorization. This includes giving importance to 
the requirement of independent motivation for any principles involved in a color categorization model. 
Furthermore, devising a transparent method of evaluation allows us to better assess the predictive 
power of such models. With these proposals, we are putting an emphasis on objectivity: if we can build a 
concrete model to embody whatever theories we might have on color categorization, we should also strive 
for analyzing its results objectively in order to increase the confidence in whatever claims we make. In a 
similar spirit, we presented and examined our proposals in an incremental fashion so that we could better 
assess the separate impact of each. Given that the approach of Regier, Kay, and Khetarpal79 has produced 
reasonable results (as scrutinized in Section Revisiting the results of Regier, Kay, and Khetarpal), we used 

78 Correia, “COM2 results”; Correia, “COM3 results”.
79 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
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it as a reference for analyses of each of our proposals. The confrontation of the results of COM3 with those 
of Regier, Kay, and Khetarpal, as well as COM1 (where we mostly adopt their assumptions), has shown that 
our final model achieves comparable predictive performance, although not across the board. However, it 
is important to see our model not as a finished product, but more as a baseline for future models with a 
similar amount of realism in mind. If COM3 is, as we claim, superior in terms of motivation for the principles 
used and achieves comparable results, it is important for future models to consider the relevance of these 
principles as explanatory factors.

In absolute terms, it is revealing to confront the results of COM3 with the sample of WCS inter-
similarities presented in Table 3. Based on these comparisons, there is no denying that we are still quite 
far from providing an explanation for the empirical color naming patterns, or at least one that would be 
truly satisfactory or exhaustive. This is more true given that we have primarily focused on the precision 
part of the modeling problem, while leaving aside the recall aspect. This conclusion is in sharp contrast 
with the strong (and, in our opinion, hasty) explanatory claims offered elsewhere80. In particular, our 
results do not confirm the hypothesis by Jameson and D’Andrade81; they rather suggest (contra others82) 
that the shape of the color space on its own is an extremely insufficient explanans for the empirical patterns 
of color categorization. It is, however, an important and promising result that with the imposition of an 
additional (quasi-)realistic environmental constraint on our basic scenario, the performance of the model 
has markedly increased (the comparison between COM2 and COM3). Apparently environment also matters.

80 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”; Regier, Kemp, and Kay, “Word 
meanings across languages support efficient communication”; Baronchelli et al., “Modeling the emergence of universality in 
color naming patterns”; Loreto, Mukherjee, and Tria, “On the origin of the hierarchy of color names”.
81 Jameson and D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space”.
82 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”; Regier, Kemp, and Kay, “Word 
meanings across languages support efficient communication”.

Figure 8: Histogram of maximal similarities for each color-naming scheme of each variant of the model. Solid line corres-
ponds to a 1d kernel density estimate as produced with default parameters by the ‘ggplot2’ R package. Dashed line indicates 
the value obtained by RKK.
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That leads us to the question of what further factors are involved in the extremely complex phenomenon 
of color categorization by the languages of the world, and which of them could possibly be incorporated in 
a model of the present type.

5.2  The multifarious phenomenon of color

Our choice of the occurrence probability of colors in the natural environment as the factor to be included 
was primarily motivated by the relative ease of implementation. There are a number of other factors that 
would be very much worth examining in the present context, but which had to be left for future research.

For instance, we might want to take into account color blindness, i.e. the existence in human populations 
of observers whose perceived similarities between objectively specified colors variously differ from the 
standard ones which are accounted for by perceptual color spaces such as CIELAB83. Jameson and Komarova84 
were the first to explore the impact of a proportion of such observers upon the emergent color categorization 
system. We could try to incorporate that into our model and test their results from a different point of view.

Besides potential variation in the perceptual apparatus of each individual, inter-individual variation in 
linguistic color categorization can also be connected to the phenomenon of semantic vagueness. Different 
ways of accounting for vagueness within the framework of signaling games have been brought forward 
by others85. Moreover, in some of this work it has been argued that incorporating vagueness in models of 
linguistic behavior is not only a necessity to be faithful to natural language use, but it can also actually have 
beneficial effects such as enabling faster convergence to more homogeneous outcomes. This could present 
a potential improvement to the models presented in this paper.

We could also try to incorporate the possible factor of uneven environmental significance of colors 
across the perceptual space: for survival and prosperity in a particular environment, some colors are 
probably more important to distinguish than others. Provided we had an independent specification of this 
empirical constraint, it could be reflected in the utility function U of our sim-max signaling interaction. 
However important this factor might be, we do not envisage the necessary data being accurately produced 
in the near future, given the difficulty of empirical collection.

Similarly, the phenomenon usually referred to as categorical perception of color in infants and pre-linguistic 
toddlers seems to constitute a potentially relevant constraint on the evolution of categorical systems86.

5.3  Pragmatic choices

In order to implement what we believe are new and promising ideas in a computational model, we had 
to make some pragmatic choices. First, we do not claim that our use of CIELAB as the approximation 
of the perceptual space of color is the only, or the best choice available. The same could be said about 
the estimate used to represent the spectrum of visible colors in COM2 and COM3. One could probably 
argue for using other models of color perception, or perhaps for some variants based on specific viewing 
conditions (lighting, background etc.). We should also note that the very possibility of an adequate three-
dimensional, Euclidean representation of color similarities has been questioned, particularly for large 
color distances87.

83 See Baylor, “Colour Mechanisms of the Eye”; Mollon, “Seeing Colour”; Fairchild, Color Appearance Models.
84 Jameson and Komarova, “Evolutionary models of color categorization. I. Population categorization systems based on 
normal and dichromat observers”, “Evolutionary models of color categorization. II. Realistic observer models and population 
heterogeneity”.
85 Franke, Jäger, and van Rooij, “Vagueness, Signaling & Bounded Rationality”; O’Connor, “The evolution of vagueness”; 
Franke and Correia, “Vagueness and Imprecise Imitation in Signalling Games”.
86 Ocelák, ““Categorical perception” and linguistic categorization of color”.
87 See Kuehni, “CIEDE2000: Milestone, or final answer?”.
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A number of pragmatic choices had to be made regarding certain parameters. These concern the 
aggregation over the informants of particular WCS languages, the imputation process for our similarity 
measure, the utility function used in the game-theoretic interaction, stopping criteria for simulations, 
the smoothing of probabilities calculated from natural scenes, and maybe more we are not even aware of. 
We tried to select sensible values for these parameters, since searching the space of possibilities would 
be impractical and would deviate us from the main points at hand. Also, models of the kind proposed in 
this paper are more akin to thought experiments than to hyper-realistic representations, making a search 
for the perfect parameter settings less imperative or even desirable. However, we cannot exclude the 
possibility that certain parameters could have a significant impact on the results obtained. In the future, 
studying other settings of these parameters could be considered, preferably based on independent 
motivations.

Another pragmatic choice was to consider fixed sets of 3 to 6 messages in all variants of our model, one 
that provided for clearer comparison with the work of Regier, Kay, and Khetarpal88. A more realistic option 
would arguably be not to determine the set of available messages from the start, but to let agents invent 
new messages in the progress of communication, as in the work of Alexander, Skyrms, and Zabell89. We see 
extending the model to incorporate this as important future work.

5.4  Modeling approach

The use of signaling games is a point in which we diverge from the loosely game-theoretic approach to color 
categorization of the agent-based models mentioned in Section Introduction. We do so for principled reasons. 
The models of Steels and Belpaeme90, and those by others91, operate with two levels of categorization above 
a continuous color space: the perceptual and the linguistic. We find this distinction problematic since it 
seems to subscribe to the notion of pre-linguistic concepts as mental representations. As we share some of 
the philosophical skepticism about this notion, we prefer to try to do without it.

The approach of Komarova, Jameson, and Narens92 (and more recently Park et al.93) depends on the 
notion of a similarity range (k-similarity) that is used to define the success (or lack thereof) of a categorization 
interaction between two agents. We find the concept of a fixed range of similarity, upon which a binary 
definition of success is construed, cumbersome and difficult to motivate. We prefer to think of success as 
gradual, and similarity as continuous, as captured in the utility function of sim-max games.

Dowman94 defines a Bayesian inference model that is motivated by a picture of language as purely a 
form of expression. As such, the learning process of agents is not influenced by any notion of communicative 
success. They learn by inducing models of color categorization systems based on examples provided by 
either the experimenter or other agents. Even though admitting that these are relevant dimensions of our 
linguistic practices, we find this picture of language limited and believe that the game-theoretic approach, 
where adaptation of strategies is driven by communicative success, better captures what underlies the 
evolution of color categorization systems.

We chose to develop our model along the paradigm of signaling games because we believe it avoids 
some of what we see as limitations of these other approaches in the literature. Moreover, we believe our 
model is simpler, more general (via the use of abstract population dynamics), computationally more 
tractable, and has the added advantage of being designed to allow for direct testing against the empirical 
data. One important aspect in which it is, however, less realistic than the agent-based models discussed 

88 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
89 Alexander, Skyrms, and Zabell, “Inventing new signals”.
90 Steels and Belpaeme, “Coordinating perceptually grounded categories through language: A case study for colour”.
91 Baronchelli et al., “Modeling the emergence of universality in color naming patterns”; Loreto, Mukherjee, and Tria, “On the 
origin of the hierarchy of color names”.
92 Komarova, Jameson, and Narens, “Evolutionary models of color categorization based on discrimination”.
93 Park et al., “The Evolution of Shared Concepts in Changing Populations”.
94 Dowman, “Explaining color term typology with an evolutionary model”.
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here, is that the equilibria it achieves can be characterized as homogeneous populations (the interpretation 
being that every agent uses the same categorization system). This is not in line with the empirical data. 
Given its generality, it is possible to interpret the model in terms of individual learning dynamics rather 
than in terms of evolutionary processes, but that would require a reformulation of some of the motivation 
given in this paper.

We see the model simply as a tool to test general assumptions about the evolution of linguistic color 
categorization. As such, we are not committed to any form of metaphysical realism regarding its elements. 
Because of that, and because we believe that there are more similarities than differences between all of 
these approaches, we would have no qualms about having this particular model re-implemented in terms 
of a different paradigm, provided that the implementation avoids the issues pointed out here.

6  Conclusion
We have proposed a new color categorization model that roughly follows other game-theoretic approaches 
in implementing linguistic interaction on top of the level of individual color perception. Furthermore, 
we have attempted to provide improvements in the motivation of the perceptual principles used in its 
architecture, and provided a more naturalistic explication for the emergence of color categories from 
linguistic interaction. In addition, we have developed a transparent evaluation methodology which enables 
us to assess the predictive power of our model, as well as other models, with respect to the empirical patterns 
of color categorization (color naming) in the languages of the world.

The results indicate that the performance of our model is roughly comparable to that of a previous 
model by Regier, Kay, and Khetarpal95. Given the added realism, we believe that its explanatory relevance 
with respect to the phenomenon in question is higher. In particular, our results do not confirm the 
hypothesis by Jameson and D’Andrade96 that these patterns are due solely to the irregular shape of the 
color space. However, imposing an additional (quasi-)realistic environmental constraint on the model had 
a clear positive effect on the model’s predictive power. This suggests a very promising direction for future 
research.

Further predictive success in the development of the present model could have strong implications 
for how we conceive the nature of color categories in human language and thinking. It adds support to the 
view that at least some of our linguistic categorization practices do not originate in a single source, but 
are results of a rich interplay between factors innate, environmental, as well as interactional. In absolute 
terms, we are still far from a full-fledged explanation of the cross-linguistic tendencies of color naming. We 
hope, however, that the proposal advanced here can serve as a step towards more realistic modeling of the 
phenomenon of linguistic color categorization.
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95 Regier, Kay, and Khetarpal, “Color naming reflects optimal partitions of color space”.
96 Jameson and D’Andrade, “It’s not really red, green, yellow, blue: an inquiry into perceptual color space”.
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A Additional material

A1 Additional results by Regier, Kemp, and Kay

In Table 4 we present similarity values for the results of Regier, Kemp, and Kay97, in an analogous way 
as was done in Table 2. We refer to their results as RKeK-n, with n corresponding to the number of color 
categories. The full data is available online98.

A2 Statistical comparison of COM1, COM2, and COM3

In order to compare the distributions of maximal similarity for particular variants of the model, we can use 
the Mann–Whitney–Wilcoxon (MWW) U test, a non-parametric statistical test of the null hypothesis that 
two sets of values are drawn from the same distribution. Not being able to reject the null hypothesis based 
on the test would mean that the values obtained by the two variants are not sufficient to distinguish them, 
that is, that we cannot reject the possibility that the models produce equivalent results, at least regarding 
how well they match real-world languages. Table 5 contains the results of the test.

Comparing COM1 and COM2, for 3, 4, and 5 messages the two are significantly different. The positive 
location shift99 indicates COM1 has a tendency to produce results that are more similar to the WCS 

97 Regier, Kemp, and Kay, “Word meanings across languages support efficient communication”.
98 Correia, “RKeK results”.
99 Location shift δ is an estimator for the median difference between a sample from the first distribution and a sample from 
the second, not an estimator of the difference of the medians. See the documentation of the implementation for more details (R 
Core Team, R: A Language and Environment for Statistical Computing).

Table 4: Similarities between RKeK results and some languages in the WCS.

RKeK-3 RKeK-4 RKeK-5 RKeK-6

Language S ARI Language S ARI Language S ARI Language S ARI

Top 3

Bété 0.38 0.51 Wobé 0.38 0.40 Bauzi 0.50 0.56 Bauzi 0.46 0.53

Wobé 0.37 0.38 Colorado 0.38 0.50 Colorado 0.45 0.60 Colorado 0.42 0.56

Culina 0.36 0.56 Bauzi 0.36 0.41 Múra Pirahá 0.42 0.47 Cofán 0.38 0.48

Additional
Ejagam 0.31 0.32 Culina 0.34 0.54 Iduna 0.34 0.53 Buglere 0.36 0.54

Cayapa 0.34 0.59

Table 5: Results of the MWW test between each pair of variants of the model. Calculations performed in R using the ‘wilcox.
test’ function. We report median similarities for each variant of the model, the value of the U statistic, the location shift δ 
between the two distributions, and p-values. Significant differences are marked in the p-values, with ** for a 99% confidence 
level and * for 95%.

Median COM1 vs. COM2 COM2 vs. COM3 COM1 vs. COM3

COM1 COM2 COM3 U δ p-value U δ p-value U δ p-value

3 0.338 0.216 0.296 369 0.134 **5.15E-06 66 –0.100 **3.04E-04 270 0.037 6.01E-02

4 0.376 0.293 0.319 376 0.083 **2.06E-06 104 –0.033 **9.76E-03 331 0.049 **4.15E-04

5 0.347 0.300 0.355 306 0.059 **4.31E-03 45 –0.065 **2.92E-05 172 -0.016 4.49E-01

6 0.316 0.281 0.364 241 0.021 2.79E-01 54 –0.059 **7.82E-05 119 -0.041 *2.84E-02
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languages than COM2. For 6 messages, however, the two are not distinguishable. COM3 seems to be a clear 
improvement from COM2 producing significantly better results across the board. When comparing COM3 
with COM1 the story is not so linear. Similarities for 3 and 5 messages are indistinguishable between the 
two variants at both 99% and 95% confidence levels. For 4 messages, COM1 seems to produce consistently 
better results than COM3, which is also patent in the plots in Figure 8. For 6 messages, however, it seems to 
be the other way around, albeit only at a 95% confidence level.
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