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Abstract: Under the label of scientific metaphysics, many naturalist metaphysicians are moving away from 
a priori conceptual analysis and instead seek scientific explanations that will help bring forward a unified 
understanding of the world. This paper first reviews how our classical assumptions about ordinary objects 
fail to be true in light of quantum mechanics. The paper then explores how our experiences of ordinary 
objects arise by reflecting on how our neural system operates algorithmically. Contemporary models and 
simulations in computational neuroscience are shown to provide a theoretical framework that does not 
conflict with existing fundamental physical theories, and nonetheless helps us make sense of the manifest 
image. It is argued that we must largely explain how the manifest image arises in algorithmic terms, so that 
we can pursue a metaphysics about ordinary objects that is scientifically well founded.
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1  Introduction
There seems to be an everlasting battle in metaphysics regarding how to deal with ordinary objects. 
Common sense intuition supports the conservative view that things are as they seem: there exist tables, 
chairs, houses, and trees. However, revisionists view the world differently and have presented different 
ontological accounts that cast doubt on our intuitions by rejecting the existence of some objects that we 
usually assume to exist. Traditionally, the two most extreme positions are eliminativism, which states that 
no ordinary objects as compositions exist whatsoever, and universalism, which suggests that any objects 
jointly compose a new object.

In recent years, many scholars have begun to shift their interest toward metametaphysics, thus 
pursuing the overarching question of how metaphysics should be conducted in general. A new emphasis 
on the sciences has thereby evolved, most strongly shaped by the work of Ladyman and Ross. These two 
scholars have critically examined the contemporary state of metaphysics1 and believe that “contemporary 
analytic metaphysics … fails to qualify as part of the enlightened pursuit of objective truth, and should be 
discontinued.”2 Arguably, the metaphysical enterprise has become detached from science in such a way that 
central arguments can no longer be well accounted for, given our contemporary understanding of physical 
nature. Therefore, Ladyman and Ross have suggested a new orientation toward a scientific metaphysics 
that embraces scientific findings, while emphasizing fundamental physics. Nevertheless, since the release 
of their book “Every Thing Must Go”, the arguments for and against the existence of ordinary objects 

1 Ladyman and Ross, Every Thing Must Go, §1.
2 Ibid., vii.
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continue to persist in the traditional manner, as we have encountered them before this critique. This is 
exemplified by two recently published books by Korman and Zemack3 and Benovsky4 on ordinary objects, 
which provide a detailed overview of the contemporary debates, while reaching very different conclusions 
regarding these objects’ ontological status. One possible reason that no overarching methodological shift 
has occurred is simply because being proficient in both the sciences and philosophy is difficult, and 
professional philosophers would have to readjust. However, as discussed in more detail below, a more 
important problem is that Ladyman and Ross have not provided a completely satisfying answer regarding 
how to approach the typical puzzles with which analytic metaphysicians have been concerned. Thus, the 
question asked in this paper is: how could a turn toward scientific metaphysics appear in terms of debates 
about ordinary objects?

I will argue that most recent developments in machine learning and computational neuroscience 
provide a new way to investigate the traditional problems we face in metaphysical disputes by analyzing and 
using simulations from the domain of computational neuroscience. In Section 2, I provide a brief overview 
of the ways analytic metaphysics has engaged with ordinary objects from within the manifest image, and 
which puzzles this approach generates. Section 3 then discusses the naturalist program in metaphysics, 
as presented by Ladyman and Ross. By more closely examining our contemporary understanding of 
fundamental physics, Section 4 discusses a naturalist approach to understanding ordinary objects and 
emphasizes the importance of building connections to our cognitive system. Section 5 introduces some 
contemporary views on cognition and neural processing, and discusses how computational models and 
simulations can provide answers to fundamental questions about the manifest image of the world. This 
paper seeks to help us progress in developing a unified picture of the world, given the best contemporary 
scientific theories about physics and the neurosciences.

2  The manifest and the scientific image: world views in conflict
Sellars argues that there is a discrepancy between our common sense understanding of the world and what 
science tells us about how the world actually is.5 We think that the world consists of a vast number of living 
organisms and ordinary objects, such as chairs, tables, mountains, stars, and so forth. This is what Sellars 
calls the “manifest image” of the world. It corresponds to our “folk” picture of causation and mereological 
composition. In contrast, science presents an alternative picture of what exists in the world. In 1911, Ernest 
Rutherford’s famous elastic scattering experiment with charged particles demonstrated that the material 
universe must be largely viewed as an empty void. Contemporary physicists present even stranger models 
that do not describe the universe as a composition of hunks of matter, but rather in terms of quantum fields 
that are mysteriously entangled.

Analytic metaphysics traditionally placed greater emphasis on the manifest than on the scientific 
image. One of the reasons for this asymmetry can be traced back to its beginnings with Quine. On the 
basis of Darwin’s theory of evolution, Quine argues in favor of a naturalization of epistemology.6 He states 
that the physiological configuration of the human organism must be equipped to access truth in a reliable 
way to sustain itself. A cognitive system that fools us about reality would have been replaced by natural 
selection, as it would not have been beneficial for survival. This argument sounds convincing and has led 
many subsequent philosophers to pursue metaphysical questions from a purely conceptual perspective, 
without relying on empirical evidence that extends beyond personal experience. This trend has also been 
influenced by the development of ordinary language philosophy, where Austin’s7 discussion of “the Nature 
of Reality” has led many philosophers to adhere to the position of naïve realism, according to which we 
have immediate access to reality.

3 Korman and Zemack, Objects.
4 Benovsky, Eliminativism, objects, and persons.
5 Sellars, Science, Perception, and Reality, §1.
6 Quine, Ontological Relativity.
7 Austin, Sense and Sensibilia.
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Peter Strawson presents further influential arguments about why we must embrace the manifest 
image. Strawson’s8 “descriptive metaphysics,” as a well thought-out ontological framework of what he 
claims to be most compatible with our daily intuitions, presents arguments against any non-object-based 
ontology that does not align with most of our daily experiences. He begins by observing that the way we 
think about the world involves assuming that there are separate, individual things that we can discuss and 
refer to. In the spirit of Kant’s transcendental philosophy, Strawson investigates the underlying necessary 
conditions of this mode of thinking. Given that our thinking about the world is based on objects in a single 
spatiotemporal system and we are able to both identify and re-identify these, he argues that the actual 
existence of these objects in the world is required for us to perceive the world the way we do. Further, he 
argues that interpersonal communication about objects would fail if these objects do not actually exist.

Although Strawson’s argument has been criticized as unsound,9 it has become very influential and 
is commonly accepted as a hurdle for any non-object-ontologist to overcome. One of the few proponents 
of process philosophy, Nicholas Rescher, points out that identification is a (cognitive) process itself, and 
argues that (re-) identification is ultimately an arbitrary, unqualified criterion for ontology.10 Nonetheless, 
Strawson’s argument ultimately follows from linguistic considerations that words are the basis of all logical 
reasoning. For him, “identifying reference” is essential to human thinking and speech.

In late twentieth-century analytic philosophy, many philosophers found numerous puzzles and 
paradoxes within the manifest image that seem to cast doubt on the consistency of these conservative 
views. Believing that chairs and houses exist raises the following commonly cited puzzles:

(a) The sorites paradox: (P1) One stone is not a heap. (P2) If a pile of N stones does not constitute a 
heap, then neither does a pile of N + 1 stones. (C) Therefore, one million stones do not constitute 
a heap.

(b) The problem of material constitution: (P1) A statue and the lump of clay from which it is formed 
have different properties. (P2) If so, then, by Leibnitz’s law,11 the statue and lump are not identical, 
and constitute distinct coincident objects. (P3) Distinct coincident objects cannot exist. (C) 
Therefore, the statue does not exist.

(c) The problem of the many: How can I say that I see one cloud in the sky, when in fact a multiplicity 
of subsets of droplets would each constitute a different cloud?

One possible way of responding to these types of puzzles is offered by eliminativism–a view that rejects the 
concept of composite objects and argues that ordinary objects should be eliminated from our ontology.12 
Eliminativism gained great attention a decade ago, and still attains some degree of popularity. By endorsing 
the principle of parsimony and avoiding any causally redundant entities, eliminativism has been argued 
by its proponents to best align with our scientific understanding of the world.13 Merricks, who strongly 
advocates this view, argues that his position is the most compatible with scientific views, regardless of 
what physical theories state. However, as discussed later, some philosophers have urged that this is not 
the case and that Merricks’s assumptions about physics are incompatible with contemporary fundamental 
physics. Nonetheless, his views remain instructive to understand how we can conceptualize reality only 
from within the manifest image, given the values of science. Merricks explains his position most intuitively 
in the following manner.14 Let us assume there are N atoms in a room arranged statue-wise. In that case, 
there are N objects in the room. However, if we assume that statues actually exist, there would not be N, but 
rather N + 1 objects in the room, where one of these objects is identical to N others by reduction. Merricks 

8 Strawson, Individuals.
9 Stroud, “Transcendental Arguments.”
10 Rescher, Process Philosophy, 40.
11 For extensional objects, Leibnitz’s law of indiscernibility states that two objects are identical if and only if they have all their 
properties in common.
12 For a detailed discussion, see Korman and Zemack, Objects.
13 Merricks, Objects and Persons.
14 Ibid., §1.



 What Simulations Teach Us About Ordinary Objects     617

states that this is not a plausible position because a one-to-many identity relationship15 cannot hold, as it 
entails mereological essentialism, which is typically rejected by straightforward analysis. In other words, 
to assume the existence of ordinary objects means to assume composition as identity. Given that the latter 
assumption is false, there are no ordinary objects from this scientific perspective.

Eliminativism does, however, remain an unpopular view these days. Many philosophers deny that 
judgment about ordinary objects is an actual part of scientific discourse,16 and follow the views of Stebbing, 
who says: “I venture to suggest that it is as absurd to say that there is a scientific table as to say that there 
is a familiar electron or a familiar quantum.”17 However, these philosophers are inclined to state that 
ordinary objects might not exist in a scientific manner, but in some other sense. Even if they do not exist at 
a fundamental physical level, they can still be said to exist in the ordinary sense of language usage, outside 
the ontological seminar room.18 However, other philosophers view the aforementioned puzzles as more 
pressing. They view them as deep philosophical challenges to widely used metaphysical concepts, and 
consider philosophers who believe that these puzzles generate a “merely” linguistic problem are missing 
the point. For example, Heller argues that the “[s]orites paradox shows us that the world is not as we think 
it to be and challenges us to give an account of just what the world is like.”19

The debates above place the manifest image as their starting point of philosophical reflection. For 
example, Merricks’s argument rests on the assumption that an ideal and complete physics will postulate 
individuals that are the simples from which all other material objects to be composed. However, some more 
recent philosophers have insisted that these underlying assumptions are inconsistent with contemporary 
fundamental physics. This topic is further discussed in the next two sections.

3  Scientific metaphysics and the Principle of Naturalistic Closure
 In more recent times, we find a new trend in metaphysics that no longer focuses on linguistic or conceptual 
analysis, but rather approaches metaphysical questions from a science-centered perspective. This new 
movement of radically naturalizing metaphysics was initially most strongly promoted by Ladyman and 
Ross,20 and is commonly referred to as “scientific metaphysics.” What characterizes this trend is its 
refusal to appeal to intuition to motivate a priori claims, while simultaneously—in contrast to the (logical) 
empiricists, such as Hume or the Vienna Circle—preserving a positive metaphysical view. Although, as 
previously discussed, Merricks argues that his views conform to any fundamental physical theory, Ladyman 
and Ross21 do not take such arguments seriously. They ridicule any micro-reductionist arguments because 
these arguments make presuppositions about reality that do not have any grounding in contemporary 
quantum theory, yet rather correspond to an understanding of physics “learned in A-level chemistry.”22 
In disagreement with Oppenheim and Putnam’s23 foundationalism about physics, Ladyman and Ross also 
propose that scientific metaphysics ought to focus on bringing forward a unified picture of the independent 
scientific disciplines by following two main principles. First, we should follow what they call the Primacy 
of Physics Constraint (PPC), stating that:

Special science hypotheses that conflict with fundamental physics, or such consensus as there is in fundamental physics, 
should be rejected for that reason alone. Fundamental physical hypotheses are not symmetrically hostage to the conclusi-
ons of the special sciences.24

15 Merricks follows the relational definitions of Lewis, Parts of Classes.
16 Thomasson, “Ontological Minimalism.”
17 Stebbing, Revival: Philosophy and the Physicists, 58.
18 van Inwagen, Existence.
19 Heller, The Ontology of Physical Objects, 69.
20 Ladyman and Ross, Every Thing Must Go.
21 Ibid., §1.
22 Ibid., 24.
23 Oppenheim and Putnam, “Unity of Science as a Working Hypothesis.”
24 Ladyman and Ross, Every Thing Must Go, 44.
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This ensures that the naturalist respects the empirical sciences and is in discord with dualist and emergentist 
positions. The second principle they endorse is the Principle of Naturalistic Closure (PNC):

Any new metaphysical claim that is to be taken seriously at time t should be motivated by, and only by, the service it would 
perform, if true, in showing how two or more specific scientific hypotheses, at least one of which is drawn from fundamen-
tal physics, jointly explain more than the sum of what is explained by the two hypotheses taken separately.25

From the perspective of unifying the sciences, both principles are motivated by the fact that physics has 
the widest scope compared to all the other sciences. To achieve a sort of unification, the maximum scope 
must persist in any greater theory. The PNC allows for and endorses metaphysical claims that build bridges 
between “separately developed and justified pieces of science (at a given time) [that] can be fitted together 
to compose a unified world-view.”26

4  Making sense of ordinary objects
To achieve the envisioned scientific unification for which Ladyman and Ross hope, we must also make 
sense of ordinary objects, as these are a central part of our empirical investigations and thoughts. Peter 
Strawson writes: “We think of the world as containing particular things some of which are independent of 
ourselves.”27 Even if we reject Strawson’s metaphysics, our phenomenological experiences of things must 
be accounted for in a naturalist metaphysics, at least because many of the special sciences discuss and 
formulate theories about classes of ordinary objects. Failing to account for the daily experiences we make 
of a world consisting of chairs, tables, and trees simply cannot be said to provide a unified picture of the 
world28.

Daniel Dennett emphasizes this point when he writes about scientific metaphysics. He says that “at 
least a large part of philosophy’s task … consists in negotiating the traffic back and forth between the 
manifest and scientific images.”29 In this sense, philosophy since antiquity has posed challenges to a unified 
understanding by identifying puzzles such as those mentioned earlier. From the naturalist’s perspective, it 
is our task today to account for these puzzles in one unified theory.

This naturalist approach of unifying the science into one greater picture and reconciling it with the 
manifest image is not uncontroversial. Rosenberg argues that throughout history any attempts of unification 
have failed, which is a good indicator for this project being futile.30 To understand some of the difficulties 
we face, let us first examine the status of ordinary objects in contemporary physics.

Even though classical Newtonian mechanics was once found to be highly unintuitive, most of all due to 
Newton’s concept of force, it is nonetheless a theory that can explain and makes predictions that are largely 
in accordance with our ordinary, everyday experiences. Newton’s theory of matter essentially conforms to 
Democritus’s atomism which remains the basic intuition about matter for many non-physicists today. If 
physics had ended here, we may not have to worry about providing an additional account of ordinary objects 
beyond the perspectives of Merricks and others. However, the issue has been complicated by quantum 
mechanics (QM), at least if we suppose that the features peculiar to QM not only concern the microphysical 
realm, but also extend to the macroscopic world. Under this supposition, we encounter highly perplexing 
problems when seeking to apply the notions of QM to macroscopic material objects. For example, this is 
illustrated by the measurement problem most prominently discussed in terms of Schrödinger’s cat.31 I do 
not intend to address all these different problems, but only focus on some issues discussed in the context 

25 Ibid., 37.
26 Ibid., 45.
27 Strawson, Individuals, 15.
28 Hofweber, “Empirical Evidence and the Metaphysics of Ordinary Objects,” even goes as far as to say that we have empirical 
evidence for the existence of ordinary objects and some realms of science could not operate without.
29 Dennett, “Kinds of Things”, 99.
30 Rosenberg, The Atheist’s Guide to Reality, 218.
31 Schrödinger, “Die gegenwärtige Situation in der Quantenmechanik.”
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of quantum entanglement—namely, the issues of localization, separation, and identification of ordinary 
objects.

The entanglement of particles describes the correlation of their fundamental properties that does not 
occur by chance. If one adopts a realistic approach to QM, then QM and classical mechanics cannot be 
aligned by the inclusion of hidden variables, and we are committed to regarding quantum entanglement 
as a feature of nature that exists objectively, independent of the observer. On this basis, without going into 
detail, quantum entanglement conflicts with three central assumptions we usually make about ordinary 
objects.32 First, contrary to our intuitive classical view of the world, quantum systems and their properties 
are generically not localized at a specific region in space-time. Second, quantum systems cannot be 
described in isolation from other systems when entangled. On quantum mechanical grounds, this issue 
defeats the classical spatial separability principle33 by which the state of each individual system determines 
its local properties. As a result of quantum entanglement, the system’s local properties are thought to be 
determined by the joint state of the entangled particles. Third, entangled quantum particles are not distinct 
individuals, as there exists no property that allows us to distinguish one from another.34 If one assumes 
that the properties of entangled systems in QM are correctly interpreted to not supervene on their parts 
and that quantum entanglement is not limited to the microscopic realm, but propagates to macroscopic 
systems, then some monists have reached the conclusion that the whole is prior to its parts.35 Under the 
assumption that everything interacted during the Big Bang, there is good reason to believe that all particles 
are entangled and build one universal system.36 It remains unclear whether everything is entangled or not; 
however, it is implausible to assume that the ordinary objects of our experience can ontologically be clearly 
distinguished from each other on the basis of physics.

If we believe that QM is approximately true and that the principles of localization, separability, and 
individualization have no physical basis, then any other theory that does postulate ordinary objects in the 
classical sense will conflict with our most fundamental scientific understanding. However, based on the 
PPC, how can a unified picture of the world be achieved, if ordinary objects are so vital to our understanding 
of the world? The answer provided by Ladyman and Ross is to treat ordinary objects not as individuals, but 
as “real patterns”—a term borrowed from Dennett37 that refers to relatively stable and enduring structural 
patterns within the data that allow for efficient description.38 What we perceive as individuals are, for 
Ladyman and Ross, “only epistemological book-keeping devices”39 that are constructs of our cognitive 
system. Thus, instead of postulating the existence of individual ordinary objects, we can explain how our 
experiences of ordinary objects as individuals come about in a way that does not conflict with science. As 
stated by Dennett:

The ontology of everyday life is now teeming with items that, like fatigues, sit rather awkwardly in the world of atoms 
and molecules. If we can understand how this population explosion came about, and why it is so valuable to us as agents 
in the world, we can perhaps discharge our philosophical obligations without ever answering the ultimate ontological 
question.40

For Ladyman and Ross, different real patterns are found and exist on different scales. The table I am 
working on is a real pattern that exists at the scale of ordinary human perception—even if the table is not 
actually an individual, but is only cognitively perceived as such. However, Ladyman and Ross claim that it 

32 These three points are elaborated in much greater detail in Esfeld, “Holism in Cartesianism and in Today’s Philosophy of 
Physics”; “Quantum Holism and the Philosophy of Mind.”
33 Howard, “Holism, Separability, and the Metaphysical Implications of the Bell Experiments.”
34 French and Redhead, “Quantum Physics and the Identity of Indiscernibles.”
35 Maudlin, “Part and Whole in Quantum Mechanics”; Esfeld, “Quantum Holism and the Philosophy of Mind.”
36 Gribbin, In Search of Schrödinger’s Cat, 229.
37 Dennett, “Real Patterns.”
38 The representation of any data is assumed to be efficient, as long as its description requires less storage space than the entire 
bit map of the raw data.
39 Ladyman & Ross, Every Thing Must Go, 240.
40 Dennett, “Kinds of Things”, 106; emphasis added.
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makes no sense to say that the table exists at cosmic or quantum scales. This ensures that the ontological 
commitments of the special sciences are on a par with those of physics, and there is no ontological 
superiority of physics over the other sciences. The only difference between the two scientific domains is that 
the laws of fundamental physics constrain the special sciences by the PPC, and not the other way around. 
This results in an asymmetry among the sciences regarding the priority of the laws they postulate, while 
also maintaining all claims concerning existence on equal grounds. Thus, while the laws of fundamental 
physics enjoy a status of priority, the entities postulated are no “more real” than tables and chairs. The 
patterns of tables and chairs are “real” in the sense that they are not merely subjective or mind dependent, 
and their description cannot be further compressed information-theoretically.

Harman critically examines the ontology proposed by Ladyman and Ross and questions how a 
multiplicity of patterns and scales comes about.41 He says that the division into discrete scales and the 
existence of a plurality of real patterns is inconsistent with an objective, autonomous reality. I agree 
with Harman that further explanations of the discretization of reality are required, yet I deny that this is 
impossible. In their unifying metaphysics, Ladyman and Ross should include a theory that allows complex 
systems, such as human beings, to think of the world as a composition of individuals. To understand why 
it is necessary for a human observer to discretize reality the way we do, I encourage naturalist philosophers 
to examine how our perceptive system operates and what makes us perceive reality as a collection of 
individual things that we can track over time.

The way Ladyman and Ross discuss real patterns and the way they understand how these are perceived 
in the mind as individuals, can be traced back to Dennett’s original paper in which he writes:

[A pattern is] discernible to the naked human eye … because of the particular pattern-recognition machinery hard-wired in 
our visual systems—edge detectors, luminance detectors, and the like.42

This quotation expresses how we thought about perception and our visual system a decade ago, when a 
representational theory of the brain still dominated the neurosciences. Today, however, the doctrine has 
shifted toward a Bayesian view of the visual system—often in connection to what is called the “predictive 
processing theory of the brain.”43 Based on this view, it is not the case that the brain merely detects and 
recognizes distinct patterns simply because of some hard-wired feature-detection mechanisms, and, with 
this, we do not see a discrete entity without possessing a prior, internal model of the world. Only a complex 
system that has already gained knowledge about the world via a dynamic learning process can recognize 
real patterns as a plurality and distinguish them from each other. To unify physics with the special sciences 
through the PNC, we must take these learning processes into account.

What I present here is by no means the first approach to ordinary objects from a machine learning or 
neuroscience point of view. For instance, Brian Smith offers a metaphysics that retains our common sense 
realist intuition of a mind independent world, while preserving a constructivist stance that suggests that 
the specific computations of the mind single out one possible symbolic representation from a multiplicity 
of alternatives. The account lays out the foundations of a metaphysical theory of objects, by which ontology, 
representation, and intentionality are intrinsically interconnected. Any statement about the world depends 
on representation, and any attempt of representation brings the world’s objects into existence together 
with their properties. Thus, talking about the world is an act of object-making, says Smith. The theory 
Smith offers can be seen as important foundational work for a metaphysical approach called “Cognitive 
Metaphysics” that was recently encouraged by Decock44 and will be further discussed below.

Given that there have been some major developments in machine learning and the neurosciences over 
the past decade, I belief it is necessary for metaphysicians to engage with these most current findings. 

41 Harman, “I Am Also of the Opinion That Materialism Must Be Destroyed.”
42 Dennett, “Real Patterns”, 33.
43 See, e.g., Hohwy, The Predictive Mind; Wiese and Metzinger, “Vanilla PP for Philosophers”; Clark, “Whatever Next? Predictive 
Brains, Situated Agents, and the Future of Cognitive Science.”
44 See Decock, “Cognitive Metaphysics.” The envisioned new realm of metaphysics goes back to Brown, “Foundations of 
Cognitive Metaphysics.”
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Ideally, this approach will allow us to make statements about our direct experiences that are consistent 
with the physicist’s view of the world. The concepts of separability and identification are crucial to our 
ordinary common sense understanding of the world; thus, explaining how the many objects we experience 
in the world arise first requires an explanation of how we experience independent, isolated objects that 
are separated from each other and can be identified as such, without initially assuming their ontological 
independence. In particular, to do justice to Strawson’s work, we are expected to explain the phenomenon 
of (re-) identification and communication without presupposing the concept of ordinary objects in the first 
place. This is the challenge we face, and, in the following, I argue for an approach to the challenge that 
considers the results from simulations performed in contemporary machine learning and computational 
neuroscience.

5  Moving toward a computational understanding of the manifest 
image
During the last few years, our knowledge in machine learning and information processing has expanded 
considerably. The introduction of Deep Learning techniques,45 such as Convolutional Neural Networks, 
has allowed us to develop methods and algorithms for a wide variety of different tasks, including object 
classification, representation, and segmentation, and image generation. These new technological 
accomplishments are the results of creating complex neural network architectures where each individual 
artificial neuron has very simple properties, yet the network as a whole can learn from the sensory data. 
When such artificial neurons are presented with some sensory information, the current hypothesis of the 
leading experts in the field is that the neurons collectively perform inference by changing their state to 
better “explain” the observed data.46

Theoretical neuroscience and machine learning research have always been closely related. Recently, 
there have been numerous publications suggesting that deep learning methods—which have been 
developed for engineering purposes—operate similarly to the way the brain processes information.47 In 
combination, both machine learning and the neurosciences are generating answers to the fundamental 
questions of how humans are able to create and identify objects, in a way that they can be classified, placed 
into relationships, and semantically processed.

Given that neural networks can learn their own categories and identify objects in images, I argue that 
a naturalist account through the eyes of machine learning and theoretical neuroscience simulations can 
provide answers to seemingly purely metaphysical question about ordinary objects. If we assume that QM 
offers little reason to believe that the individual objects of the manifest image exist in the fundamental 
sense, then the most reasonable explanation for our experience of such separable objects is that a certain 
cognitive process must construct them from the flow of registered information. As stated by Decock, we can 
either interpret the puzzles about ordinary objects as purely epistemic questions in metaphysical disguise, 
or we can believe that epistemic and metaphysical questions are entangled in a Kantian framework.48 
Exploring the computations performed by the brain can help us make sense of certain features of the 
manifest image—particularly how the cognitive system shapes our beliefs concerning tables and chairs. To 
provide evidence for these views, I will demonstrate how simulations answer the following three questions 
regarding ordinary objects:

45 Goodfellow, Bengio, and Courville, Deep Learning.
46 Hinton and Sejnowski, “Learning and Relearning in Boltzmann Machines”; Friston and Stephan, “Free-Energy and the 
Brain”; Berkes and Orbán, “Spontaneous Cortical Activity Reveals Hallmarks of an Optimal Internal Model of the Environment”.
47 Sacramento et al., “Dendritic Cortical Microcircuits Approximate the Backpropagation Algorithm”; Sacramento et al., 
“Dendritic Error Backpropagation in Deep Cortical Microcircuits”; Bengio et al., “Feedforward Initialization for Fast Inference of 
Deep Generative Networks Is Biologically Plausible”; Scellier and Bengio, “Equilibrium Propagation: Bridging the Gap between 
Energy-Based Models and Backpropagation.”
48 See also Swanson, “The Predictive Processing Paradigm Has Roots in Kant,” who argues that predictive processing echoes 
Kant’s approach to metaphysical questions.
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1. Why are ordinary objects perceived as separate, individual things, if they do not actually exist in 
this physical sense? (Strawson)

2. If objects do not exist in the sense of being separable, individual entities, how can two independent 
agents communicate with each other about them? (Strawson)

3. If all things are somewhat mental, how can real things be different from imagined ones? How can 
we distinguish between fictitious and real objects?49

5.1  Explaining the experience of separability

In the following, let us examine simulations that can help explain how the perception of separate objects is 
possible. Most recent developments in computational neuroscience do not conceive the brain as passively 
computing sensory information with predetermined feature-detection mechanisms. Instead, the brain is 
viewed as actively engaged in forming the best hypotheses it can infer about the environment (given some 
computational constraints, as explored below). This is computationally realized by having a “recognition 
model” of the environmental that processes the upstream information flow from the sensory input to 
the higher cortical regions of the brain. Meanwhile, the recognition model is constantly updated by a 
“generative model”, that generates images by processing information from higher to lower cortical regions 
of the brain. These generated images are the predictions of higher cortical regions about lower cortical 
activity. Any mismatch in the prediction updates the recognition model. Figure 1 displays three layers of a 
neural network, with each layer having information flowing in both directions. In this figure, I only indicate 
what a single neuron cell “sees,” which is the information flowing both upwards and downwards.

Figure 1: Each hidden neuron of the network receives information from higher and lower cortical layers (here only indicated by 
the central neuron). The model running from top to bottom is a generative network that produces images, whereas the model 
from bottom to top is the recognition network.

This concept can best be illustrated by a toy example shown in Figure 2. This example has data (2a) that 
consist of images that humans perceive as either “0” or “2.” We perceive these images as such because our 
neurological system has already created an internal representation of these categories. However, each of 
the data’s instances only consists of a number of pixels with different pixel values, and there is no clear 
separation between the zeros and twos. Nonetheless, some neural network models (2b) can make clear 
separations of the data over the course of a learning process. This can be achieved in a semi-supervised 
manner, without any labeling of the input images. In the case discussed here, the input image is also set to 
be the output target image (in an auto-encoder fashion). Therefore, the objective of the network is to recreate 
the input values as successfully as possible by building an internal representation of the data (2c) and 
generating an image from this representation. The “goodness” is determined by an objective function—a 
function that returns a high value when the model’s input and generated output strongly diverge. This 
function should be minimized by learning an adequate representation of the data.50

49 This is a common response we already find against 18th century idealism. See e.g. McDonough, “Berkeley on Ordinary 
Objects” and Downing, “George Berkeley”.
50 This is similar to how we think the brain learns about the world. See details in Rao and Ballard, “Predictive Coding in the 
Visual Cortex.”
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(a) Input (b) Model (c) Latent space

Figure 2: The raw input data (a) are transformed by the model (b) into two separate clusters in the network’s represen-
tation or latent space (c). Those points that are far away from the cluster centers correspond to images that have been 
presented to the model at an early stage in the learning process, where the model has not yet managed to build its 
internal categories.

Based on such learning techniques, unsupervised image segmentation algorithms have become very 
popular in the computational vision community.51 After learning an internal representation of the world, 
these algorithms can distinguish an object from its background. Given such a representation, the usual 
approach is to compute for each pixel the probability of being connected to the surrounding pixels. The 
upper section of Figure 3 displays some colored images of objects that individuals can encounter in their 
daily lives. Below, these objects are distinguished from their backgrounds algorithmically. Within the 
machine learning community, there exist a huge number of different models of how such an algorithm 
can be implemented in supervised or unsupervised fashions. It is unknown which of these methods most 
closely corresponds to the algorithm that our brains use when performing image segmentation. Perhaps 
the techniques that our brains employ are much more sophisticated than any of the existing models, or 
perhaps it is only the brain’s vast computational resources that allow it to perform object segmentation 
with such ease.

Figure 3: A semantic image segmentation algorithm uses the upper images as input and returns the lower images as output.52

Whatever the underlying computational mechanisms of the brain are, we learn from these simulations that 
we need not assume the existence of objects to make sense of image segmentation. A system that perceives 
the world by segmenting images will be inclined to believe that there fundamentally exist separable 
ordinary objects or substances, even if this is actually not the case.

Returning to Quine, it seems initially puzzling that the existence of separate, self-subsistent objects do 
not exist in the physical world. As stated by Quine, evolution must have enabled us to perceive the world as 
it is to maximize our chances of survival. Therefore, we would assume that ordinary objects have a physical 

51 For a survey on unsupervised segmentation algorithms, see Zhang, Fritts, and Goldman, “Image Segmentation Evaluation.” 
See also Spratling, “Image Segmentation Using a Sparse Coding Model of Cortical Area V1” for an image segmentation model 
of the cortical area V1.
52 Images from Chen et al., “Semantic Image Segmentation with Deep Convolutional Nets and Fully Connected CRFs.”
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basis independent of our minds; however, this conclusion is drawn too quickly. Simulations conducted in 
computational neuroscience research provide strong reasons why there is an advantage for organisms to 
see objects as individuals. It is not possible to go into technical detail here, but I will briefly discuss some 
results that arguably indicate how an evolutionary benefit derives from experiencing the world as we do.

By sampling the world through the sensory system, the brain maps a continuous probability distribution 
onto a lower dimension space. I illustrate this implicitly in Figure 2, where each image (2a) has the size 
of 28 x 28 = 784 pixels, and is thus a point in a 784-dimensional space. The data consisting of a set of 
images of zeros and twos are samples from probability distributions in this very high-dimensional space. 
Computationally speaking, the brain has two options: it either explicitly encodes for an approximation of 
this probability distribution or it encodes for the distribution’s different states. Today, it is strongly believed 
that the brain does not encode for the full probability distribution, but only for the different states expressed 
by the distribution’s peaks. This is computationally realized by introducing a non-linearity (e.g., threshold) 
that distinguishes the different peaks of the probability distribution (e.g., based on the local maximum 
likelihood).

By simulating point neurons, Petrovici53 computationally explains our experiences when we are 
confronted with certain optical illusions. Consider the famous case of the duck-rabbit. A subject looks 
at the duck-rabbit image and alternates between two different image interpretations. This situation is 
considered to indicate that the network activity encodes for states, rather than probabilities. The brain 
is either in one state or another, and is not in an intermediate state. If the reverse were the case, then we 
would not see either a duck or rabbit—rather, our brain would judge the duck-rabbit to be a superposition 
of both a duck and a rabbit, with different probabilities (e.g., 40% duck and 60% rabbit). There are at 
least two simple reasons why such a neural implementation would not be useful for survival. First, as 
Petrovici demonstrates, computing multiple possible states is computationally very inefficient,54 resulting 
in wasted resources. Second, the brain must be committed to a decision to act in response to one of the 
categorical alternatives indicated by the peaks in the distribution of the probability mass function. If the 
visual cortex computes that there is a 10% chance of a donkey, 30% chance of a house cat, and 60% chance 
of a hungry lion standing next to me, then there is little benefit in adjusting my behavior according to the 
first two probabilities. Therefore, bringing the brain into a determinate state was favored over the course of 
evolution.

5.2  Explaining communication

Once a model of an individual perceiving unit—or an observing agent—is trained, simulations of agents 
communicating about objects are possible. This is achieved in the following manner. After training 
each agent’s model, the individual network can identify an object and generate an own image from the 
corresponding class. This self-generated image is shared with the other agent, who ideally identifies the 
image correctly. More precisely, the simulation setup is as follows (see Figure 4). The model consists of two 
agents, A and B, who are represented by two slightly different neural network architectures. Both agents 
have been trained on different sets of the image database to illustrate that communication does not require 
the exact same prior experience. When A chooses a sample point within a region of high density in its latent 
space, it generates an image via top-down computations over the network. This image is shown to B, who 
identifies the image by forward, upstream propagation, and samples a new self-generated image from the 
corresponding class by top-down generative image processing. This alternation between generation and 
identification of images is a process that allows agent A to be informed that agent B has sampled the correct 
internal class representation, and vice-versa. Thus, both agents possess the information that they are both 
communicating about the same object, even if no such thing actually exists, independently of their joint 
construction.

53 Petrovici, “Form Versus Function”, §6.
54 Ibid., §6.4.
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Figure 4: Two trained neural networks can communicate with each other by receiving generated images from the other network 
and returning images of the same class.

Simulations such as those presented here indicate that typical arguments against non-object ontologies 
fail. There need not be any-thing out there that is a precondition for my capacity to communicate and 
experience the world as I do, in terms of separate individual objects. The only crucial points are that all 
communicating agents share a similar cognitive process with regard to the underlying computations and are 
exposed to a similar environment. This enables the agents to understand each other, if communication is 
modeled as described above. A direct consequence is that this defeats our natural inclination to a universal 
object ontology. For most philosophers, it “seems plausible to suppose that there is nothing we can say that 
the Martians can’t,”55 and vice-versa. However, this view is incorrect, based on the perspective provided 
here. If the Martians’ information-processing system is encoded very differently, it will not necessarily be 
able to have the same categories as humans do, and will not necessarily individuate the same objects. In 
principle, learning theory tells us that it is possible for a Martian to never grasp the concept of a teacup, 
regardless of how many cups I present it with, and that the Martian will not be able to recognize the cup as 
an individual, given only its perceptual system.56 This is in line with Smith, who suggests that individuation 
is dependent on an organism’s cognitive processes.57 Nonetheless, I should note that if the Martian is a 
technically well-equipped scientist with an understanding of mathematics and statistics, the human could 
still communicate the idea of a cup even if the Martian cannot train her perceptual system to “see” it as an 
individual by looking at it.

5.3  Distinguishing fictitious from real objects

The semi-supervised model used above to explain communication involves both a generative and recognition 
component. The recognition model is capable of identifying and re-identifying the objects it perceives. 
Section 5.1 showed that the generative network model creates images that seek to predict the neural activity 
of lower cortical regions as closely as possible. The purpose of this is to improve the recognition model. 
More precisely, the generated images can be used to learn the recognition model by relying on an objective 
function that minimizes the error between the input and self-generated image. Interestingly, however, the 
generative network can also be used for other purposes, such as “dreaming” new, never-before-perceived 
images. This is achieved by (partially) turning off the recognition network and letting the generative model 
dominate the network. As a consequence, the generative component can create new dreamed instances of 
an existing category to make predictions on the sensory data.

Generative models are the key to understanding dreaming and the imagination of fictional entities. 
To provide an example, Figure 5 displays some images that were imagined by generative neural networks. 
Looking at the faces in Figure 5b, we find that the human eye cannot distinguish these imagined faces from 
real ones. Although the fictitious images are not distinguishable from real-world sensory input, the neural 
network behind these images can still easily distinguish between top-down and bottom-up information 

55 van Inwagen, “Being, Existence, and Ontological Commitment”, 479.
56 This point is ultimately guaranteed by the No-Free-Lunch-Theorem stating that no universal learning algorithm exists. See 
Wolpert and Macready, “No Free Lunch Theorems for Optimization.”
57 Smith, On the Origin of Objects; Smith, “Reply to Dennett.”
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flow, either by rule-based or learning-based operations. For example, this is achieved in in Generative 
Adversarial Networks, where one network generates images, trying to fool another network that is trained 
to discriminate self-generated images from real images.58

 
(a) (b)

Figure 5: Different images created by a generative neural network. (a) An image of Descartes in the style of Van Gogh’s pain-
tings, based on the model of Gatys et al. (2016). (b) Faces of non-existent people.59

The predictive processing theory of the brain suggests that information is not only processed upstream 
from lower-level cortical regions that are closer to the sensory input and moved to higher cortical regions, 
but also vice-versa. The theory states that this process does not simply occur occasionally, but occurs 
continuously. In the case in which discriminating, bottom-up information flow dominates the generative 
net component, the brain projects less prior structure onto lower cortical regions, thereby inflicting only 
small changes on the data. In the reverse case, however, the input data might get completely distorted by the 
generative network. The brain can generally control the degree to which things are imagined. Under normal 
circumstances—where the subject is neither dreaming, taking psychedelic drugs, nor suffering from certain 
mental disorders—the imagined and the real are neurologically distinguished by the brain’s attention to 
information flow. The significance of simulations here is that they provide proof for the possibility of such 
a network, and subsequently help answer the question of how fictional objects are distinct from “real” 
objects.

6  Conclusion
Through using simulations, we can offer explanations about how neural processes build an internal 
representational model of the acquired sensory data. By investigating these simulations more closely, 
we can determine how these computations explain some of our experienced features of the world. Over 
the course of the simulation, the neural model creates clusters from which we can explain how distinct 
categories and separate objects arise in the visual cortex, given the data that the model was fed. As the 
brain seeks to maximize its internal order, while computing for states, rather than probabilities, the subject 
must experience the world to consist of ordinary objects, such as chairs and tables. This is the world that 
causes philosophers to ponder over puzzles in the manifest image regarding perception, epistemology, 
and metaphysics. The process that creates these experiences can be expressed in a set of mathematical 
operations or a sequence of instructions computable by the brain. These equations or instructions only 
provide a limited idea of how and why the world, as we experience it, comes about in a certain way and not 
another. Simulations allow us to obtain a new understanding of which properties emerge in the manifest 
image. They help us explore the manifest image in a different way to the philosopher’s traditional approach 
of evaluating one’s experiences as linguistic terms. Simulations help us visualize the categories that the 
network creates, and thus indicate to some extent how a person with the same visual input might think 
about the world.60

58 See details in Goodfellow, “NIPS 2016 Tutorial”; Goodfellow et al., “Generative Adversarial Nets”; Radford, Metz, and 
Chintala, “Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks.”.
59 Images from Karras, Laine, and Aila, “A Style-Based Generator Architecture for Generative Adversarial Networks.”
60  This research was possible thanks to the Forschungskredit of the University of Zurich, grant no. FK-19-065.
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