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Abstract: Recent advances in philosophical thinking about consciousness, such as cognitive phenomenology 
and mereological analysis, provide a framework that facilitates using computational models to explore issues 
surrounding the nature of consciousness. Here we suggest that, in particular, studying the computational 
mechanisms of working memory and its cognitive control is highly likely to identify computational correlates 
of consciousness and thereby lead to a deeper understanding of the nature of consciousness. We describe our 
recent computational models of human working memory and propose that three computational correlates 
of consciousness follow from the results of this work: itinerant attractor sequences, top-down gating, and 
very fast weight changes. Our current investigation is focused on evaluating whether these three correlates 
are sufficient to create more complex working memory models that encompass compositionality and basic 
causal inference. We conclude that computational models of working memory are likely to be a fruitful 
approach to advancing our understanding of consciousness in general and in determining the long-term 
potential for development of an artificial consciousness specifically.
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1  The computational investigation of consciousness
It is easy to dismiss most work done in artificial intelligence (AI) and computational modeling in general as 
irrelevant to the mind-body problem and, more specifically, to the study of consciousness or to assessing 
the prospects for ultimately creating a conscious machine. This view appears to be fairly widespread in the 
philosophy literature. It includes arguments that the subjective nature of consciousness (the “hard problem”) 
precludes study via objective scientific methods1, and that the lack of a formal definition of consciousness 
makes a conscious machine unobtainable2. These views have resonated with many investigators in AI. For 
example, a survey of AI researchers found that many of them agreed that the problem was too ill-defined 
to be of interest in AI3.

The term “consciousness” has indeed proven difficult to define. One way to approach this issue is 
simply to define consciousness to be the subjective experiences and awareness that a person has when 
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awake, consistent with past suggestions that a more precise definition should be deferred, given our 
inadequate scientific understanding of the nature of consciousness.4 Many philosophers use the term 
phenomenal consciousness to refer to this notion of consciousness, emphasizing that one is referring 
specifically to the phenomena of subjective experience (qualia; or “something it is like”5). This can be 
contrasted with the term access consciousness that refers to the availability of information for conscious 
processing. Access consciousness has been defined in different ways. Here we will take a perceptual state 
to be access conscious “if its content gets to the Executive System, whereby it can be used to control 
reasoning and behavior.”6 Our work described in this paper is most closely related to this functional 
concept of access consciousness.

Our primary concern in the following is with identifying computational aspects of high-level cognition 
that are associated with consciousness. We are more optimistic about the eventual prospects of such an 
approach than some others. Part of this optimism comes from recent developments in contemporary 
philosophical thinking that we believe imply a more positive viewpoint about using computational models 
to investigate the nature of consciousness, and perhaps even its eventual instantiation in machines. Two 
of these developments, cognitive phenomenology and mereological analysis, are especially encouraging in 
this regard to those of us in computer science, as follows. 

The first development, cognitive phenomenology, asserts that our conscious experiences extend 
beyond traditional sensory qualia to include deliberative thought and high-level cognitive processes.7 This 
assertion has proven to be controversial among philosophers. While philosophers generally agree that 
some aspects of cognition are accessible to consciousness, there is substantial disagreement beyond that 
point. Specifically, a number of philosophers argue that all phenomenology is fundamentally sensory, 
including that associated with cognitive states.8 In contrast, advocates of cognitive phenomenology argue 
that there are additional phenomenal aspects of cognition that cannot be accounted for by traditional 
sensory qualia and mental imagery. For example, an advocate of cognitive phenomenology might assert 
that abstract thoughts provide an example of this, or that there are different non-sensory subjective 
qualities associated with hearing a sentence in a foreign language when one understands that language 
versus when one does not.

While there are those who do not agree with the concept of cognitive phenomenology, we find the 
arguments of advocates to be compelling. Here we will simply assume that cognitive phenomenology exists 
and ask what that might imply. In other words, we assume that there are distinct non-sensory subjective 
mental experiences associated with at least some aspects of cognition, and ask what this might signify 
about the value of computational modeling as an investigative tool concerning the nature of consciousness. 
Our answer is that cognitive phenomenology makes computational studies based on modeling cognitive 
processes potentially much more relevant to studying consciousness. Most past modeling work in AI and 
in cognitive science more generally involves computational mechanisms that do not in any meaningful way 
have associated sensory representations. This makes such models irrelevant to understanding important 
aspects of consciousness if one assumes a priori that all phenomenology is sensory based. For example, 
computational models that use abstract symbols that are not grounded in the environment in any way 
would, in the absence of any sensory representation, be viewed as irrelevant to consciousness studies. From 
our perspective in computer science, assuming the existence of non-sensory cognitive phenomenology 
changes the possibilities: It implies that computational states in such models that are lacking in sensory 
representations might still be associated with conscious cognitive states, and thus it greatly broadens the 
range of computational mechanisms that might reasonably be found to correlate with consciousness.  In 
other words, cognitive phenomenology substantially expands the potential for mechanistic computational 

4 Crick, “The Astonishing Hypothesis”, 20.
5 Nagel, “What is it like to be a bat?”, 435.
6 Block, “On a Confusion about a Function of Consciousness”, 230.
7 Bayne and Montague, “Cognitive Phenomenology”, 12; Chudnoff, “Cognitive Phenomenology”; Jorba and Vincente, 
“Cognitive Phenomenology”, 74.
8 Prinz, “The Conscious Brain”, 149; Carruthers, “The Centered Mind”, 15.
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models of cognitive processes to provide insight into computational correlates of consciousness, a concept 
that we describe in Section 2.9

A second development in philosophy that strikes us as relevant to computational studies of 
consciousness is the assertion that phenomenal consciousness can be approached effectively via mereology. 
Mereology focuses on formally studying the part-whole relations of a system. Prentner has recently 
argued within the framework of process metaphysics that re-conceiving phenomenal consciousness in 
the context of mereology could be an effective way to elucidate its nature.10 In other words, rather than 
viewing consciousness as composed of qualia that are non-structured properties of subjective experience, 
consciousness and its constitution should be understood in terms of a mereological analysis of internally-
structured processes. This mereological approach provides a potential bridge between philosophical issues 
surrounding the hard problem and methodologies already used in AI cognitive models, and more generally 
suggests to us that investigating the structure of cognitive processes might lead to useful insights about 
consciousness.

Philosophical perspectives such as cognitive phenomenology and mereology open the door to much 
more widespread consideration of computational methods for investigating the fundamental nature 
of consciousness and the mind-brain problem.11 In Section 2, we first briefly explain the concept of 
computational correlates of consciousness in general terms and review some past related work that has 
been done searching for them. We also identify three practical barriers that make identifying computational 
correlates very challenging. These barriers include a clearly identifiable “computational explanatory gap” 
that can productively serve as the focus of computational investigations.  In Section 3 we address the 
question of which aspects of cognition might be most productive to examine in searching for computational 
correlates of consciousness. We argue that investigating the mechanisms that underlie working memory, 
a part of the human short-term memory system that is widely accepted as involving conscious aspects of 
human cognition, should provide an especially fertile subject for investigation in this context (Section 3.1). 
To support our argument, we then describe two examples of our recent work implementing computational 
models of working memory that begin to investigate this question. The first of these models deals with a 
simple card matching task and is implemented using neural computational methods (Section 3.2). Based on 
our work with this model we conclude that three specific computational correlates of consciousness could be 
identified, and we briefly describe each of these. Our second model examines more complex compositional 
and inference aspects of working memory and is implemented using more traditional symbolic AI methods 
(Section 3.3). We are examining whether, when this latter model is converted to purely neurocomputational 
form, using the three computational correlates of conscious that we identified will be sufficient to support 
the more advanced working memory mechanisms that are involved. In Section 4, we summarize our results 
and their implications.

2  Computational correlates of consciousness
Given the lack of a generally-accepted formal definition of consciousness and the subjective nature of 
consciousness, it is especially important to be clear as to what the goal is in any effort to study consciousness 
computationally. In the work described here, we are not trying to create a phenomenally conscious machine. 
Instead we are focused on a more tractable issue: exploring whether there exist identifiable computational 
aspects of high-level cognitive processes that are associated with the presence of consciousness. According 
to cognitive phenomenology, such underlying computational mechanisms may be directly relevant to 
elucidating the nature of consciousness.

9 However, we note that whether phenomenology is solely sensory or not does not impact our main purpose and results in this 
paper. Even if consciousness is purely sensory-based, identifying computational correlates of consciousness remains relevant 
(e.g., identifying the contribution of non-conscious cognitive processes to conscious sensory phenomena).
10 Prentner, “Process Metaphysics of Consciousness”, 9.
11 Chella & Manzotti, “Machine Consciousness: A Manifesto for Robotics”, 14.
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We take a computational correlate of consciousness to be any aspect of information processing 
that is associated with conscious cognitive activities but not with unconscious cognitive processes12. 
This could include, in theory, both representations and processing mechanisms based on the symbolic 
methods of traditional AI. For example, variable binding is an aspect of information processing in 
consciously-reportable reasoning that is performed in symbolic AI systems. However, our interest here 
is primarily on correlates based on neurocomputational modeling. Specifically, we are interested in 
neurocomputational correlates of consciousness, the representation and processing of information in 
neural networks, because they address lower-level, more fundamental (in our opinion) mechanisms 
than symbolic AI, and they can be directly compared to contemporary neuroscience knowledge. 
Neurocomputational correlates can be related to but in general differ from the more widely known 
neural correlates of consciousness involving biological systems, the latter of which include biochemical 
phenomena, neuroanatomical structures, patterns of brain electrical/metabolic activity, and other 
inherently biological phenomena related to the brain13. Neurocomputational correlates are more 
abstract and are independent of the physical hardware on which they occur, be it the biological brain, 
silicon-based electronic circuitry, or bio-molecular systems. We emphasize that in all of this, the word 
“correlates” neither implies nor precludes causality.

A substantial number of past computer modeling studies have been done that can be viewed as 
exploring various aspects/implications of potential neurocomputational correlates of consciousness14. 
Some examples illustrate this point, as follows. Viewing recurrent neural networks as mathematical 
dynamical systems, it has been proposed that the activity attractor states15 of these networks characterize 
conscious states16. Another suggested correlate is widespread activity over multi-region neural networks 
that form a global workspace17, something that is consistent with functional imaging studies of the human 
brain during conscious versus unconscious tasks. It has also been hypothesized that having a self-model 
embedded in a robot’s internal model of its environment could be the basis of a conscious robot. This has 
been investigated using a recurrent neural network control system in a physical robot that, impressively, 
was able to pass the mirror test used by ethologists to assess self-awareness in animals18. Other previously 
hypothesized examples of potential computational correlates include higher-order neural networks that can 
represent the information in other lower-order neural networks and are related to higher-order thought 
theory in philosophy19, the reportable collective processing of shared information20, and various other 
aspects of top-down attention mechanisms21. These potential correlates are not mutually exclusive, and no 
doubt additional ones will be proposed and studied computationally over the next several years. The hope 
is that identification of a sufficient set of such correlates could ultimately lead to a better understanding of 
the structure and functionality of the conscious mind.

In practice, identifying neurocomputational correlates of high-level cognition can be very challenging 
for at least three reasons. First, it is often not clear precisely which aspects of cognition are conscious 
and which are not. It is widely recognized that substantial portions of cognition occur at a sub-conscious 
level. In practice, experimental cognitive psychologists have often taken subjects to be conscious of an 
event if they can verbally report that event’s occurrence. Such a criterion, however imperfect, leads one to 
characterize unconscious cognitive processes as involving relatively fast parallel processing where multiple 

12 Cleeremans, “Computational Correlates of Consciousness”, 1032.
13 Chalmers, “What is a Neural Correlate of Consciousness?” 17; Metzinger, “Neural Correlates of Consciousness”.
14 Reggia, “The Rise of Machine Consciousness”, 116-127.
15 The term “attractor” here usually refers to fixed-point attractors, but could also refer to other types of attractors, such as 
limit cycles and chaotic attractors.
16 Fekete and Edelman, “Towards a Computational Theory of Experience”, 815; Taylor, “Neural Networks for Consciousness”, 1209.
17 Baars, “A Cognitive Theory of Consciousness”, 86; Connor and Shanahan, “A Computational Model of a Global Neuronal 
Workspace”, 1140.
18 Takeno, “Creation of a Conscious Robot”, 203.
19 Cleeremans et al., “Consciousness and Metarepresentation”, 1034.
20 Haikonen, “Consciousness and Robot Sentience”, 187.
21 Taylor, “CODAM: A Neural Network Model of Consciousness”, 987; Perlis and Brody, “Operationalizing Consciousness”, 4.
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tasks can occur simultaneously with only limited interference between them, while in contrast, conscious 
cognitive processes are characterized as being slow and serial, and attempting to simultaneously carry 
out multiple tasks that require conscious involvement often leads to errors because the tasks interfere 
with each other22. However, the limited ability of investigators in psychology to definitively discriminate 
between conscious versus unconscious cognitive processes more generally means that, in searching for 
computational correlates of consciousness, one needs to focus on aspects of cognition where there is 
relatively clear and widely accepted agreement on this issue.

A second practical challenge is that there is currently only very limited understanding in AI of how 
high-level cognition (logical reasoning, goal-directed problem solving, planning, metacognition, etc.) that, 
at least in part, is widely accepted as involving conscious mental activity, can be instantiated as low-level 
neural computations (artificial neural networks). We have referred to this previously as the computational 
explanatory gap23. The computational explanatory gap is an abstraction, a purely computational issue, 
concerning how the symbolic-level algorithms occurring with high-level cognition can be mapped into the 
distributed representation and parallel computations occurring in “low-level” neural networks. As such 
it is distinct from the traditional explanatory gap in philosophy associated with the “hard” mind-brain 
problem. From our viewpoint in AI, and in contrast to many in philosophy who would view this as part of 
the “easy” problem, the computational explanatory gap is somewhat mysterious and fundamental because 
attempts to solve it over more than half a century have found it to be largely intractable, this in spite of the 
fact that the human brain provides a proof that a solution exists. To our knowledge past philosophical work 
has not provided deep insight into why this intractability exists.

The third practical challenge to identifying computational correlates of consciousness within 
the scope of cognitive phenomenology is more technical. Specifically, one must not only establish 
that a computational mechanism is associated with some aspect of conscious mental activities, but 
also that it is not associated with other non-conscious mental information processing. For example, 
one might question whether a neural activity attractor state in general is a computational correlate 
of consciousness since it is easy to imagine neural networks with attractor states that appear to be 
associated with non-conscious functionality, such as central pattern generators for motor control in the 
spinal cord. In this case it is necessary to go deeper and clarify what specific types of activity attractor 
states would qualify as neurocomputational correlates of consciousness, something that is an open 
question to our knowledge.

3  Modeling working memory and its cognitive control
If one accepts that identifying computational correlates of consciousness could lead to a deeper 
understanding of consciousness, the immediate question becomes: What aspects of cognition would be 
most fruitful to examine in searching for such correlates? Our answer is that studying the computational 
representations and processes that support, interact with, and control working memory are especially 
likely to be productive, for the reasons that we give below.

Cognitive psychologists have long viewed human memory as partitioned into a variety of systems based 
on behavioral and neuroscientific data24. For example, long-term memory systems include both declarative 
semantic and episodic memory, and non-declarative procedural memory. Here our interest is instead in the 
short-term memory system referred to as working memory. We propose that working memory mechanisms 
form an ideal context for exploring ideas concerning computational correlates of consciousness. In 
particular, based on our recent work modeling working memory, we hypothesize that three important 

22 Baars, “A Cognitive Theory of Consciousness”, 74; Dehaene and Naccache, “Towards a Cognitive Neuroscience of 
Consciousness”, 5; These distinctions relate to and reinforce the reality of the computational explanatory gap discussed in the 
following sections in the sense that the properties of unconscious cognitive processes, such as fast parallel processing, are a 
great match to what occurs in artificial neural networks, while properties of conscious cognition are not.
23 Reggia et al., “The Computational Explanatory Gap”, 158.
24 Squire and Dede, “Conscious and Unconscious Memory Systems”, 3.
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computational correlates of consciousness can be identified: itinerant attractor sequences, top-down 
gating, and very fast Hebbian weight changes during learning. We elaborate on each of these three ideas as 
we discuss our computational models of working memory in subsequent sections.

More specifically, in the following we will describe two recent computer models that we have been 
studying that incorporate simulations of working memory and its control via cognitive processes, and relate 
these studies to the three hypothesized correlates listed above. The first model uses a neurocomputational 
framework and is trained to solve simple card matching problems. Our second modeling effort is based 
on a more traditional AI symbol-processing framework that controls the behavior of a physical robot. It is 
more complex but of special interest in that it incorporates composition and inference involving working 
memory. We are using this second model to determine whether the three hypothesized computational 
correlates of consciousness are sufficiently powerful to incorporate compositional and inference aspects of 
working memory when rendered in a purely neurocomputational framework. It is these models that led us 
to the three computational correlates stated above. Before describing these models, we first briefly consider 
the nature of working memory and its relationship to consciousness.

3.1  Human working memory and consciousness

Human working memory is the memory system that transiently stores and manipulates information over a 
short time period25. For example, suppose someone were to ask you verbally to “Subtract 196 from 425 and tell 
us what you get without writing anything down.” In doing this you would have to retain in working memory 
the numbers involved, and manipulate this information in various ways (“Let’s see, I need to borrow a 1 from 
the 10’s column, …”). Working memory is characterized by retention of information over a period of seconds 
to minutes. If you were consecutively solving multiple arithmetic problems like the above, the information 
about each problem is quickly cleared from working memory in a controlled fashion and replaced by new 
problem-specific information as you work on each problem. Working memory is characterized by very 
severe restrictions on the amount of information that it can retain. Experimental studies by psychologists 
have found that human working memory capacity is approximately four independent items of information 
under laboratory conditions26, in marked contrast to the enormous capacity of human long-term memory. 
Items stored in working memory may be lost because they interfere with each other or because they 
“decay” over time, reflecting its limited storage capacity. Further, working memory can be compositional: 
The operations acting on stored information can construct structured representations, such as the three-
digit answer to the subtraction problem above. While working memory has historically been most closely 
associated with prefrontal cortex in the human brain, recent studies present a more nuanced view with 
widespread involvement of other cortical regions27. 

We argue here that working memory and the cognitive control mechanisms associated with it 
provide an excellent context in which to search for computational correlates of consciousness. To see 
this, we next consider how modeling working memory addresses in part the three barriers to identifying 
neurocomputational correlates of consciousness that we gave in Section 2: discriminating conscious from 
non-conscious cognitive processes, instantiating high-level cognitive processes as low-level distributed 
neural processing, and establishing that computational correlates are uniquely involved with conscious 
cognition. 

First, working memory and the operations on it are widely considered by both psychologists and 
philosophers to involve conscious and reportable cognitive processes.28 This perspective is supported by 

25 Baddeley, “Working Memory and Conscious Awareness”, 22.
26 Cowan et al., “ On the Capacity of Attention”, 53.
27 Lara and Wallis, “The Role of Prefrontal Cortex in Working Memory”.
28 Baars and Franklin, “How Conscious Experience and Working Memory Interact”, 166; Baddeley, “Working Memory: Theories, 
Models and Controversies”, 15; Block, “Perceptual Consciousness Overflows Cognitive Access”, 567; Carruthers, “The Centered Mind”, 
75; Courtney et al., “The Role of Prefrontal Cortex in Working Memory”, 1819; Persuh et al., “Working Memory and Consciousness”.
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recent neurobiological evidence that the neocortical mechanisms underlying working memory are fairly 
widespread and not limited to prefrontal cortex29. It is also consistent with other evidence that conscious 
cognitive processes are associated with widespread cortical intercommunication and activity30, and with the 
global workspace theory of consciousness mentioned earlier. Thus, according to cognitive phenomenology, 
working memory and the cognitive control of working memory provide an appropriate context in which to 
search for computational correlates of consciousness. 

Second, instantiating the cognitive processes associated with working memory in distributed neural 
computations, although challenging, appears to be reasonably feasible. Several neural models of aspects 
of working memory have been developed and studied in recent years, for example31. These models often 
include simulating presumed cognitive control of working memory via top-down “executive processes” 
that, in the brain, is believed to be mediated by regions of the prefrontal cortex. The circumscribed nature 
of working memory, relative to human long-term memory and cognition in general, is advantageous 
in making such models computationally tractable. Our card-matching model below illustrates this 
tractability.

Finally, the top-down, goal-directed control of working memory is very different from much of 
the unconscious sensory processing and low-level motor control that occurs in the brain. This, and 
its partial dependence on symbol manipulation, makes it highly likely that the neurocomputational 
mechanisms underlying conscious information processing in working memory will ultimately be found 
to differ from those associated with unconscious information processing. Our suggestion below is that 
this top-down goal-driven control process is implemented by gating mechanisms where one or more 
neural modules as a whole control the functionality of other modules/networks as a whole. While we 
are focused primarily on working memory, we suspect that gating of other conscious, goal-directed 
cognitive functions occurs widely in the brain. For example, suppose a person is listening to a series of 
a few spoken words. If the goal is simply to remember those words, then top-down gating mechanisms 
would activate their retention in working memory and de-activate speech output modules such as 
Broca’s area. In contrast, if the goal is to repeat aloud the words with no expectation of recalling them 
later, then Broca’s area and other speech output modules would, via gating, be turned on. What is 
special here is that, in general, the neural modules involved not only exchange information via inter-
connecting pathways, but they also control one another’s actions in a very broad sense. A module may, 
via gating, turn the activity or connections of other modules on or off, determine when other modules 
discard or retain their activity state, when they learn or forget information, and when they generate 
output. There is substantial evidence that top-down gating operations occur in the brain, although the 
precise mechanisms involved remain unclear32. 

Given this rationale for developing computational modeling of working memory as the basis for 
identifying computational correlates for consciousness, we now turn to describing our recent investigation 
of working memory models for two tasks, a type of problem solving involving a card matching task, 
and imitation learning of simple procedures.  Most past work investigating computational correlates of 
consciousness has used a paradigm in which one starts with a presumed correlate (global information 
processing, self-modeling, etc.) and then investigates its plausibility and/or implications via computational 
experiments. In contrast, our approach here can be characterized as starting with a model of conscious 
information processing (i.e., a model of working memory), and asking what distinct, core neurocomputational 
mechanisms were needed to instantiate that model. We then hypothesize that these key mechanisms are 
computational correlates of consciousness.

29 Lara and Wallis, “The Role of Prefrontal Cortex in Working Memory”.
30 Massimini et al., “Breakdown of Cortical Effective Connectivity During Sleep”, 2231.
31 Pascanu and Jaeger, “A Neurodynamical Model for Working Memory”, 201; Sylvester et al., “Controlling Working Memory 
with Learned Instructions”, 25; Verduzco-Flores et al., “Modeling Neuopathologies as Disruption”, 21.
32 Frank et al., “Interactions Between Frontal Cortex and Basal Ganglia”, 139; Sherman & Guillery, “Exploring the Thalamus 
and Its Role in Cortical Function”, 303; Singer, “Dynamic Formation of Functional Networks by Synchronization”, 191.
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3.2  A computer model of working memory during a card matching task

Our first investigation implemented and studied a multi-component neurocomputational model of 
working memory and the cortical executive processes that control it33. The model includes computational 
mechanisms allowing one module to gate the actions of other modules, determining when environmental 
patterns are stored or removed in working memory, when learning occurs, and when to update the state of 
the model in general. The model has been applied to simulate human behavior in both an n-back task (a 
standard test of working memory used by psychologists) and in a card-matching task. We consider just the 
latter, more challenging card-matching task here. 

Figure 1 shows the components and structure of the card-matching task’s neural network. The 
neurocognitive agent controlled by the neural circuitry shown in Figure 1 can see the current configuration of a 
set of cards on a table (visual input image at the upper left) and selects specific cards on the table to be turned 
over by pointing at them (motor output at lower left). The agent’s goal is to remove all of the cards from the table 
in as few steps as possible. At each time step, the agent can select two face-down cards to turn over, revealing 
the identity (the patterns on their faces) of those two cards. If the two cards match, then they are removed 
and progress is made towards the goal of clearing the table. If the selected cards reveal different patterns then 
they are turned back over and remain face down on the table. For this latter case, the agent’s working memory 
records which patterns have just been seen on these two cards and their locations. Continuing this example, if 
the agent next turns over a different card and discovers that it has a pattern on its face matching that on one of 
the first two cards, then based on its working memory contents the agent would also select the (currently face 
down) appropriate previous card to get a matching pair that is removed from the table. 

33 Sylvester et al., “Engineering Neural Systems”, 39.

Figure 1: The neurocomputational architecture used for the card matching task. Input to the system (upper left) consists of 
images of a set of cards on a table. Information about the location and face patterns of these cards is extracted from these 
images. This visual information is used by the agent to select which card to turn over next (lower left motor output). The rest  
of the diagram shows the architecture of a neural model that serves as the agent’s “brain” that controls its behavior. Each 
dark grey box represents a neural region, with arrows indicating pathways connecting the regions. Key to our discussion 
here is that the agent has a working memory (lightly shaded larger box in the center left of the illustration) where it retains 
the identities and locations of a few recent cards that it has seen (subject to decay), and an executive control module (lightly 
shaded box on the right) that directs the agent’s working memory and output motor actions via gating. Further details are 
given in the text.
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Many of the details of the neural architecture shown in Figure 1 are described elsewhere34, and 
are not germane to our discussion. Two aspects of the model are however particularly important here. 
First, the working memory (on the left in Figure 1) is a recurrent neural network that stores information 
about which cards have been observed previously by learning, at appropriate times, the location and 
identity of those cards. This allows the system subsequently to choose pairs of cards based on its past 
experience, much as a person does. Working memory is implemented as an auto-associative neural 
network that uses one-step Hebbian learning. It stores object-location pairs as attractor states, activity 
states to which the memory network will evolve over time. This allows the system to retrieve complete 
pairs when given just the object information alone or just the location information alone as needed 
during problem solving. This functionality can be viewed as a solution to the binding problem35. Learned 
information in working memory decays with time, allowing stored information to be displaced as new 
information arrives. 

The second relevant point about our model is that the control module’s instruction sequence memory (on 
the right in Figure 1) is “programmed” a priori via temporally-asymmetric one step Hebbian learning so that 
it has learned temporal sequences of attractor states. Each of these states represents an “instruction” that 
is part of an algorithm that performs the card matching task. The recurrent network used in the instruction 
sequence memory thus implements a procedural memory that is capable of simultaneously storing 
multiple instruction sequences that are used to perform card matching tasks. Each instruction indicates 
to the control module which gates should be opened at that point in time during problem solving. In other 
words, the instruction sequence memory allows the system to learn simple “programs” (procedures) for 
what actions to take in situations where there are zero, one, or two cards face up. The instruction sequence 
memory uses Hebbian learning to both store individual instructions as attractor states of the network, and 
to transition between these attractors/instructions during problem solving. 

The model’s instruction sequence memory serves as an “executive system” for working memory. It is 
inspired by current knowledge of biological prefrontal cortex functionality, and directs and controls the 
actions of the rest of the system. This executive control module is initially trained to carry out the card 
removal task and acts via nine top-down gating connections to control the sequence of operations that 
are performed by the agent. Its outgoing gating connections (bottom right in Figure 1; these connections 
are pictured ending with -|| to suggest their valve-like gating functions) act on the various operational 
components of the system to control when information can flow over pathways and when information 
is to be learned/deleted by working memory. For example, the rightmost gating connection’s activity 
gmotor turns on/off the output from the motor module, determining when and where the agent points at a 
card to indicate that it should be turned over. As other examples, the activation gobj,WM and gloc,WM of two 
other gating connections determine when a seen card’s identity and/or location are stored in working 
memory. A mathematical description of how these gating connections work in the model can be found 
elsewhere36. Their functionality is inspired by what neuroscientists refer to as multiplicative modulation 
in the brain37.

When given an appropriate set of parameter values, our model exhibited accuracy and timing results 
reminiscent of those we observed experimentally in humans performing similar card matching tasks. For 
example, it successfully solved every one of hundreds of randomly generated tasks on which it was tested, 
and the number of rounds the model required to solve card matching problems as the number of cards 
involved varied was qualitatively similar to what we observed in having human subjects carry out the same 
task. This supports the idea that our model captures some important aspects of human control of working 
memory. 

34 Sylvester and Reggia, “Engineering Neural Systems for High-Level Problem Solving”.
35 Feldman, “The Neural Binding Problem”.
36 Sylvester and Reggia, “Engineering Neural Systems for High-Level Problem Solving”, 42.
37 Akam and Kullmann, “Oscillatory Multiplexing of Population Codes for Selective Communication in the Mammalian 
Brain”, 111.



 Modeling Working Memory To Identify Computational Correlates of Consciousness     261

Given the above results and the tenets of cognitive phenomenology, the key question becomes: What 
core computational mechanisms were required to implement the card matching task that might therefore 
be hypothesized to be computational correlates of consciousness? In answering this, we considered 
representation, processing, control and learning mechanisms. Our answer is that there are three critical 
neurocomputational mechanisms that were essential to make our card matching model function effectively 
and that we consider to be potential computational correlates of consciousness. They are

i) itinerant attractor sequences representing learned cognitive states in working memory, 
ii) top-down gating mechanisms associated with the cognitive control of working memory, and
iii) very fast weight changes that support immediate learning/unlearning in working memory.  

We now discuss each of these in turn. 
The first proposed computational correlate of consciousness is itinerant attractor sequences representing 

learned cognitive states in working memory. Each learned cognitive state in such a sequence is an attractor 
of the underlying recurrent neural network that drives the instruction sequence memory as it controls the 
overall system’s functioning during card matching or other tasks. It has previously been hypothesized that 
an activity-space trajectory might serve as a computational correlate of consciousness38, but here we are 
specifically emphasizing the fact that the trajectory is composed of an attractor sequence, that it is specific 
to working memory control, that it involves learned rather than built-in states and control mechanisms (in 
other words, it represents “software” of the system rather than pre-wired circuitry or “hardware” that is 
genetically pre-determined), and that it specifically involves cognitive states in higher level reasoning and 
problem solving. 

The second potential computational correlate of consciousness in our model is the use of top-down 
gating of working memory that controls what is learned and manipulated by working memory. Arguably 
these gating operations (see discussion of Figure 1 above), driven by the sequences of attractor states in 
the executive control module, correspond to consciously reportable cognitive activities involving working 
memory, and thus they are a potential computational correlate of consciousness. Such intimate control of 
working memory learning and manipulation conveys a sense of ownership or agency to a system and thus 
forms an important part of conscious awareness. It also relates to the concept of mental causation discussed 
in the philosophy of mind literature concerning free will.

The third potential computational correlate suggested by our model is the use of very fast weight changes 
that support immediate learning/unlearning in working memory. Working memory is able to reliably store 
a new piece of information immediately upon a single presentation of that information. Our modeling work 
implements such fast weight changes, or “one step learning”, that supports immediate learning using 
Hebbian weight change rules to acquire both information about the environment and temporal behavioral 
sequences. These two types of information are learned/stored in working memory using temporally 
symmetric and asymmetric versions of Hebbian learning, respectively. 

3.3  Modeling working memory during imitation learning

The card-matching model described in the previous section provides an answer to the question of how one 
can use neurocomputational methods to implement (at least) a circumscribed part of working memory and 
its cognitive control. In doing so, we argued that it suggests the three potential computational correlates 
of consciousness characterized in the preceding section. However, the card-matching model is a very 
limited simulation of working memory and its control. For example, it does not support the compositional 
aspects of working memory, nor the ability to manipulate and more generally to reason with the structured 
contents of working memory. Even more troublesome, while it provides for very fast weight changes that 
learn information from a single stimulus presentation, it does not adequately allow for the very fast and 

38 Fekete and Edelman, “Towards a Computational Theory of Experience”, 815.
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definitive controlled erasure of items that are no longer needed in working memory. While such aspects 
of working memory are readily implemented using traditional symbol-processing methods in AI, they 
are largely beyond the practical capabilities of the card matching model and, more generally, existing 
neurocomputational methods.

To address these issues, we are currently investigating whether the same three principles that we have 
postulated are computational correlates of consciousness are sufficient to implement these much more 
powerful cognitive processes associated with working memory. Our ongoing research program involves the 
following steps:

1. select an existing target cognitive system that uses symbolic AI methods which support a compositional 
working memory and the ability to make inferences based on the contents of that working memory;

2. develop a practical framework, a neural virtual machine, capable of implementing universal computation 
in purely neurocomputational systems;39 and

3. use the neural virtual machine to re-implement the symbolic AI target cognitive system as a compositional 
working memory based on purely neurocomputational methods. 

Our fundamental research hypothesis that is being challenged in this work is that the same three 
mechanisms that we are taking to be computational correlates of consciousness will prove sufficient to 
create this more advanced and complex neurocognitive model, supporting our claim that they are important 
computational correlates of consciousness, according to the principles of cognitive phenomenology and 
mereology. We now briefly describe each of the three steps in our research program.

The first step is to identify a state-of-the-art target cognitive system that, implemented using the 
methods of symbolic AI, incorporates a compositional working memory. For this we have selected a recently 
developed cognitive robotic system named CERIL40 that learns from human demonstrations (imitation 
learning)41. CERIL was initially entirely based on conventional AI programming methods and software (no 
neural networks), but we recently replaced its low-level sensorimotor components with neurocomputational 
control methods, making it a hybrid system. Its cognitive-level components for problem solving and 
learning remain expressed solely as algorithms that are within the rubric of top-down symbolic AI. CERIL 
learns to perform bimanual procedures based on representing the demonstrator’s intentions in its working 
memory, rather than on trying to replicate the observed actions verbatim. The robot’s high-level reasoning 
during imitation learning is based on a knowledge base of cause-effect relations. As illustrated in Figure 2, 
our bi-manual Baxter robot learns and represents in working memory a plausible high-level explanation 
(“Intentions”) of the demonstrator’s goals in performing the specific low-level actions that are actually 
observed by the robot (this is abductive rather than deductive reasoning). The constructed explanation 
allows the robot to use the same cause-effect relations to generate its own, possibly different hierarchical 
plan for carrying out the procedure in similar situations. Further, it allows the robot to learn and often 
to subsequently generalize to new similar situations from just a single demonstration, much as a person 
does in learning from imitating others. It also enables the robot to explain its actions to a human based 
on its inferred high level intentions and their causal relations. We did a theoretical analysis of CERIL’s 
learning algorithms, including establishing their soundness, completeness and complexity, and measured 
their effectiveness across multiple applications via a systematic experimental evaluation. A critically 
important result is that, having learned a high-level representation of the demonstrator’s actions from a 
single demonstration, CERIL is often capable of performing the learned task in the physical world. It uses its 
own plan, inspired by but modified from that of the human demonstrator, to successfully generalize from 
a single demonstration. The critical point for us here is that CERIL makes use of a structured compositional 
working memory: In learning to imitate the demonstrator’s behavior, CERIL constructs and maintains in its 

39 While universal computation has been implemented in some previous neural systems, these past implementations have not 
been based on the three computational correlates of consciousness described above.
40 CERIL is an acronym for Cause-Effect Reasoning for Imitation Learning.
41 Katz, Huang, et al., “A Novel Parsimonious Cause-Effect Reasoning Algorithm for Robot Recognition”, 177.
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working memory a hierarchical representation of its explanation and a hierarchical representation of its 
planned actions, and makes inferences involving both of these hierarchies. CERIL’s hierarchical plan can 
be viewed abstractly as a part-whole relationship network, making the ideas of mereology relevant to its 
understanding and analysis.

CERIL’s existing symbolic AI algorithms for representing and controlling working memory, 
cognitive-level cause-effect reasoning, planning and learning provide a concrete, circumscribed target 
functionality for a purely neurocomputational implementation of modeled human cognitive processes. 
Further, the current symbolic AI implementation of CERIL, along with human experimental work that 
we are currently conducting, provides a standard against which our neurocomputational results can be 
compared.

The second step in our research program is to develop a practical framework, a neural virtual machine 
(NVM), that is capable of implementing universal computation in systems of neural networks. The NVM, 
which has been implemented over the last two years42, provides a purely neurocomputational framework 
for instantiating cognitive-level algorithms that are currently readily implemented via more traditional 
symbolic AI methods, but much less so via existing neural network methods. It provides many of the tools 
needed to “program” the behavior of neural systems in much the same way that conventional computers 
can be programmed. It encompasses and qualitatively extends the methods used in our card-matching 
model. For example, unlike that previous application-specific model, the NVM is completely general 
purpose in nature.  Further, it introduces a novel fast store-erase synaptic learning rule that, in a single 
time step, both stores and erases associations simultaneously using Hebbian and anti-Hebbian weight 
changes. This allows the possibility that top-down working memory control mechanisms can quickly 
remove information from working memory. Thus, in theory, the NVM should be able to implement the same 
working memory and reasoning algorithms that are currently readily done using traditional symbolic AI 
methods, such as those in CERIL, but now in a solely neurocomputational framework. Use of the NVM is 
outlined in Figure 3.

42 Katz et al., “A Programmable Neural Virtual Machine”, 10.

Figure 2: A sketch of CERIL’s approach to imitation learning. 1. On the left, a person demonstrates a procedure within an 
artificial physics-enabled world named SMILE on a typical desktop/laptop computer. Here a disk drive dock is used where a 
faulty disk is indicated by a red LED turning on. The demonstrator shows a sequence of steps: open the cabinet, flip the toggle 
switch, remove the faulty disk, discard it, pick up the new disk, etc. that restore the disk drive dock to its normal operational 
state. 2. A robot controlled by CERIL then uses its cause-effect relational knowledge to construct in working memory a hierar-
chical explanation/interpretation of the low-level actions observed in the demonstration. The high-level sequence (“Inten-
tions” in the middle panel) learned from a single demonstration represents the goals of the demonstrator, not how to copy the 
demonstrator’s actions verbatim. 3. Subsequently, when presented with a mock-up disk drive dock in the real world, the robot 
matches its internal models against objects on the table and then constructs a hierarchical plan that, when performed by 
the robot, will achieve the same goals as those of the demonstrator. 4. The executed plan (on the right) typically differs from 
that of the human demonstrator. For example, the disk to be replaced may be in a different slot, the new disk in a different 
location, and the robot may need to transfer a disk from one gripper to another to facilitate its insertion in the slot. The robot 
learns both to carry out the demonstrator’s intentions rather than copy the observed actions, and to successfully generalize 
from a single demonstration in this context.



264   J. A. Reggia et al.

The NVM supports all of the functionality that is standard in conventional computers but now 
instantiated as neural networks, with a clear architectural distinction between the domain-independent 
neural system itself and any associated domain-specific information. The NVM’s functionality includes 
instruction operands, conditional branching, pointers, compositionality, and heterogeneous associative 
memory modules. The NVM can learn and use neural attractor sequences to represent not only arbitrary 
procedures, but also to remember arbitrary contiguous memory items in general. The constituent activity 
patterns of such sequences can be fed through a hetero-associative decoder to retrieve the corresponding 
memory contents. When appropriate, retrieved memory contents can effectively be treated as pointers and 
“dereferenced” by feeding them through the decoder again, allowing the NVM to represent trees and other 
hierarchical data structures in addition to sequences. Understanding how this structured representation 
occurs and its implications are important issues for mereological analysis.

Critically important to our research program here, the NVM’s instruction set is sufficiently expressive 
so that the NVM can be programmed to represent the high-level symbolic concepts and algorithms relevant 
to imitation learning in CERIL. For example, its instruction set is sufficiently expressive so that the NVM 
can represent and learn cause-effect relations and can subsequently manipulate them in its working 
memory (compositionality) during problem solving. Learning is based on a one-step Hebbian learning rule 
that supports the ability to simultaneously store one pattern while erasing another. NVM input code is 
in human-readable form and capable of representing the procedures acquired during learning.  It comes 
with an assembler and loader that can transparently convert these human-readable programs into the 
corresponding NVM encodings that are actually learned by the recurrent neural networks in the resulting 
neural system. Our work on the NVM promotes human-understandable knowledge representation and 
transparency by supporting a direct mapping between symbolic human-readable programs and system 
dynamics encoded in the NVM, and by using recent analytical methods that we developed for analyzing 
recurrent attractor neural network dynamics43.  

While the NVM is not intended to be a veridical model of the detailed microscopic neural circuitry 
of the brain, the NVM implementation that we have developed is potentially biologically relevant at the 
macroscopic neuroanatomical level. Applications using the NVM produce neural networks composed 
of simulated brain regions and pathways between them, and these recurrently-connected regions and 
pathways can be designed to mirror those existing in the brain. For example, in a separate application from 

43 Katz and Reggia, “Using Directional Fibers to Locate Fixed Points”, 3636.

Figure 3: Using the NVM. After an initial description of a neurocomputational model’s architecture (leftmost), human-
authored programs are learned by that neural architecture (middle left) using local learning rules. Execution of the stored 
program(s) is emulated by running the dynamics of the underlying recurrent neural networks (middle right), which involves 
additional fast local weight updates. During execution a “codec” (coder-decoder) converts between the neural representations 
and human-readable input/output (rightmost).
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our work here modeling brain regions relevant to post-traumatic stress disorder44, there are NVM modules 
that are intended to be analogous to dorsolateral prefrontal cortex (stores procedures as neuro-dynamical 
itinerant attractor sequences) and basal ganglia (control instruction execution via a gating mechanism). 
Each module in this system is a recurrently connected network of continuously valued neurons (rate 
encoding) whose adaptive synaptic weights are modified during learning using various forms of one-step 
Hebbian learning (no use of iterative error backpropagation). Each instruction is performed with multiple 
gating operations that coordinate stepping through program memory and exchanging information between 
model regions.

Finally, the third step in our research program is to use the NVM to re-implement the symbolic AI target 
cognitive system CERIL as a compositional working memory based on only neurocomputational methods. 
This final step in our work is currently in progress. As noted above, our central hypothesis is that the 
three computational correlates of consciousness that we have identified will be sufficient to support the 
compositional and reasoning abilities needed without introducing additional innovations. If this proves to 
be the case, it will support the generality and plausibility of these three correlates by showing that they can 
address the broader mechanisms that are associated with working memory. This exploration may also lead 
to other novel insights and suggestions for other computational correlates of consciousness.

This third part of our research program is truly challenging in the context of current neural network 
technology. For example, it requires representing hierarchical cause-effect relations. Roughly speaking, 
the underlying knowledge is a set of temporal cause-effect relationships: “X can cause Y1 then Y2 then 
Y3, Y1 can cause Z1 then Z2, …,”, where each cause or effect is an intention, sub-intention, or observable 
action that influences the external environment as was done in CERIL, but now represented as distributed 
activation patterns in neural networks. Such sequences can be stored as a sequence in NVM memory, 
where each pattern in the sequence is a “pointer” to another sequence also stored in a different area of 
the NVM memory’s dynamical state space.  These sequences each contain the individual cause and 
ordered effects for a particular relationship. Sequences of tokens are encoded by neural dynamics that 
transit through the corresponding patterns. These neural dynamics are ultimately determined by learned 
connection weights. All of this causal knowledge can be rapidly stored in working memory using the NVM 
via temporally symmetric and temporally asymmetric forms of one-step Hebbian learning as was done in 
our card-matching model.  The key point here is that the modeled causal knowledge and cognitive processes 
are a learned virtual machine, represented by the distributed patterns of activity over the underlying 
neural substrate, and are not built into this underlying neural “hardware”. Another major challenge is to 
implement CERIL’s causal inference algorithm used during learning and its planning algorithm used after 
learning. The critical compositional aspect of these algorithms is based on constructing a problem-specific 
explanation of observations, i.e., abductive reasoning, based on the stored causal knowledge.

4  Summary and discussion
Past work that has developed computational models related to consciousness, either to deepen our 
understanding of its nature or to explore the possibility of artificial/machine consciousness, has often been 
based on hypothesized computational correlates of consciousness45. These include a global workspace, 
higher-order neural networks, and aspects of attention mechanisms (see Section 2). This past work has 
generally started with the assumption that a certain computational correlate exists and then developed a 
model based on that assumption. In the work described here we have taken a somewhat different approach. 
Noting that working memory and its cognitive control are widely viewed as associated with conscious 
thought, we developed a model of working memory. Only subsequently do we ask as to which core 
neurocomputational mechanisms were required to do this: What underlying computational mechanisms 

44 Davis et al., “A Neurocomputational Model of Increased Saccade Latency and BOLD Changes in Posttraumatic Stress 
Disorder”.
45 Reggia, “The Rise of Machine Consciousness”, 116.
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are critically needed to realize such a model and distinguish it from other contemporary neural networks in 
general? Our answer to this question is that at least three key mechanisms were needed in our model, and 
as such are candidates for computational correlates of consciousness: itinerant attractor sequences, top-
down gating, and very fast weight changes.

The first of these, itinerant attractor sequences, deals with how learned information is represented and 
processed in recurrent neural networks. It asserts that conscious cognitive activity is represented as a sequence 
of learned cognitive states in working memory, where each cognitive state is represented as a distributed 
pattern of neural activity. The term “itinerant” here refers to a behavior in which the neural system gravitates 
towards a fixed activity state but that this state is unstable, leading to a learned transition to another attractor 
state, and so forth. While it has been suggested previously that individual activity attractor states may be 
relevant to consciousness46, such suggestions have been of limited utility because they do not address the 
issue of transitions between attractor states and the concept of an attractor state in general is fairly generic. 
The computational correlate we are proposing here differs in defining mechanisms for transitions between 
attractor states and in associating these states specifically with learned representations of conceptual 
information. Itinerant attractor sequences mesh well with the idea that individual thoughts must persist for a 
significant period of time (on the order of 100 milliseconds or so) to become conscious, while still permitting 
a “train of thought” as a sequence of transient attractor states.

Our second proposed computational correlate, the use of top-down gating associated with the cognitive 
control of working memory, deals with how working memory is controlled by so-called executive functions. 
Such gating relates high-level cognitive processes for reasoning, problem-solving, and planning, to events in 
working memory. Top-down gating differs substantially from previously proposed computational correlates 
of consciousness. For example, unlike past computational models inspired by higher-order thought theory 
that are concerned with metacognitive states which monitor one another, gating involves modules that control 
each other’s actions. Top-down gating also differs from, but complements and might ultimately include, past 
suggestions that top-down attention mechanisms (the efference copy associated with attention47, multiple 
neural modules attending to the same topic48, etc.) are computational correlates of consciousness. Of interest in 
this context is that direct and indirect top-down gating of neural activity is widely accepted by neuroscientists 
to occur in the brain, but remains only partially understood. Several hypotheses have been put forward as 
to the underlying mechanisms responsible for this functionality in the brain, including well-documented 
direct backwards connections between cortical regions49, indirect influences via the network of basal ganglia 
and thalamic nuclei pathways50, or even via functional mechanisms such as synchronization of cortical 
oscillations51. While our model necessarily makes a commitment to a specific computational mechanism 
to permit its implementation, our assertion that top-down gating of working memory is a computational 
correlate of consciousness is intended to be neutral regarding which of these biological mechanisms is/are 
ultimately found to be responsible for implementation of top-down gating in the primate brain.

Our third proposed computational correlate, very fast weight changes, deals with the speed with which 
information changes in working memory. Unlike long-term memory that requires a consolidation process 
and may require repeated presentation/rehearsal of information before it is retained, working memory 
is remarkably fluid. Immediate learning and retention occurs with a single presentation of information, 
and stored information can quickly disappear as it competes with new incoming information that needs 
to be retained. Our working memory model handles this issue using one-step Hebbian and anti-Hebbian 
learning mechanisms, respectively. This approach to weight changes is a major departure from the 

46 Fekete and Edelman, “Towards a Computational Theory of Experience”, 807; Taylor, “Neural Networks for Consciousness”, 
1207.
47 Taylor, “CODAM: A Neural Network Model of Consciousness”, 987.
48 Haikonen, “Consciousness and Robot Sentience”, 187.
49 Van Essen, “Corticocortical and Thalamocortical Information Flow”, 173.
50 Chatham et al., “Corticostriatal Output Gating During Selection from Working Memory”, 930; Sherman and Guillery, 
“Exploring the Thalamus and its Role in Cortical Function”, 253.
51 Akam and Kullmann, “Oscillatory Multiplexing of Population Codes for Selective Communication in the Mammalian Brain”, 
111; Singer, “Dynamic Formation of Functional Networks by Synchronization”, 191.
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learning mechanisms used in most contemporary neurocomputational systems based on gradient descent 
methods, including in modern deep learning systems52, although a few recent studies are beginning to 
incorporate fast weights into such models53. Hebbian learning, including temporally-asymmetric versions 
that are potentially important for learning sequential information, has been experimentally established 
as occurring in the mammalian nervous system. Further, recent empirical results in neuroscience have 
hypothesized that rapid synaptic changes are a neural correlate of working memory, consistent with our 
hypothesis54.

The results presented here are, of course, predicated on our assumptions about the relationships of 
working memory and consciousness. In a strict sense, they are only relevant to a cognitive consciousness55 
or functionally-defined consciousness, such as access consciousness as we defined that term earlier56. They 
also do not consider, for example, possibilities such as panpsychism.  However, in spite of these limitations, 
our results and other work on computational correlates of consciousness may ultimately prove very useful 
in informing fundamental philosophical theories of consciousness in unexpected ways. For example, 
we speculate that bridging the computational explanatory gap via the identification of computational 
correlates of consciousness may even eventually help with demystifying the hard problem in philosophy. 
This opinion is supported by a historical analogy with vitalism. The concept of life was just as mysterious 
to many scientists during the 1800’s as the concept of consciousness is to us today. Many scientists at that 
time accepted the philosophical doctrine of vitalism57. Vitalism postulates a non-physical “life force” or 
“vital spirit” to living beings that is not possessed by non-living objects. Vitalists believed that the laws of 
physics and chemistry alone would never be able to fully account for living processes: there was an apparent 
philosophical explanatory gap between being alive and what could be explained mechanistically, similar 
to the philosophical explanatory gap concerning phenomenal consciousness today. Currently we believe 
that much of the mysteriousness underlying this philosophical explanatory gap concerning life was actually 
due to a “biophysical explanatory gap” involving the limited scientific understanding two hundred years 
ago of how processes associated with life (reproduction, inheritance, metabolism, and so forth) could be 
implemented by biophysical mechanisms. Today, while there is still no generally accepted definition of life58, 
much of the mystery surrounding life that led to vitalism has faded away. This has occurred due to scientific 
advances in molecular genetics and evolution (e.g., discovery of DNA), an improved understanding of self-
organization and emergent behaviors, a mechanistic explanation of cellular energy metabolism, and our 
ability to synthesize organic molecules from inorganic ones. We believe that, analogously, much of the mystery 
surrounding consciousness today will diminish as we develop a better understanding of the computational 
explanatory gap and gain a deeper understanding of the computational correlates of consciousness.

In summary, while much remains to be done, the computational correlates of consciousness that 
we have proposed here as well as those postulated by previous investigators provide encouragement for 
the potential of computational models to clarify issues related to the mind-brain problem. Philosophical 
theories about consciousness involving cognitive phenomenology and mereological analysis provide 
encouragement to those of us in computer science about this potential. Computational modeling work may 
in turn contribute back to the further development of such theories by exploring the (sometimes unexpected) 
implications of these theories when they are explored in detail. This is not only true for understanding 
human consciousness, but also in considering the difficult theoretical issues that arise when one analyzes 
the possibility of animal and/or machine consciousness more broadly.

Acknowledgements: This work was supported in part by ONR award N00014-19-1-2044.

52 Goodfellow et al., “Deep Learning”, 161.
53 Ba, et al., “Using Fast Weights to Attend to the Recent Past”; Munkhdalai and Trischler, “Metalearning with Hebbian Fast 
Weights”.
54 Bhandari & Badre, “A Nimble Working Memory”, 503; Mongillo et al., “Synaptic Theory of Working memory”, 1543.
55 Chalmers, “The Conscious Mind”, 25.
56 Block, “On a Confusion about a Function of Consciousness”, 230.
57 Garrett, “What the History of Vitalism Teaches Us about Consciousness”, 616.
58 Regis, “What is Life?”; Wolfram, “A New Kind of Science”, 1178.
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