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Abstract:  A central theme in western philosophy was to find formal methods that can reliably discover 
empirical relationships and their explanations from data assembled from experience. As a philosophical project, 
that ambition was abandoned in the 20th century and generally dismissed as impossible. It was replaced in 
philosophy by neo-Kantian efforts at reconstruction and justification, and in professional statistics by the more 
limited ambition to estimate a small number of parameters in pre-specified hypotheses. The influx of “big data” 
from climate science, neuropsychology, biology, astronomy and elsewhere implicitly called for a revival of the 
grander philosophical ambition. Search algorithms are meeting that call, but they pose a problem: how are their 
accuracies to be assessed in domains where experimentation is limited or impossible? Increasingly, the answer 
is through simulation of data from models of the kind of process in the domain. In some cases, these innovations 
require rethinking how the accuracy and informativeness of inference methods can be assessed. Focusing on 
causal inference, we give an example from neuroscience, but to show that the model/simulation strategy is 
not confined to causal inference, we also consider two classification problems from astrophysics: identifying 
exoplanets and identifying dark matter concentrations.
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“There are, however, no precisely describable methods of discovery.” –John Rawls

1  The demise of method in philosophy
The great philosophical discovery of the 20th century was that a grand aim of western philosophy is a 
phantasm, a will-o-the-wisp, a red herring, as likely to succeed as squaring the circle. That misplaced 
ambition was to find a recipe for discovering the processes of nature, especially relations of cause and 
effect, a procedure for distinguishing true relations from happenstance and irrelevance. Aristotle’s Posterior 
Analytics, Descartes’ Principles, Bacon’s Novum Organum, Newton’s Principia and Optiks, and Leibniz’ 
“Universal Calculus” all essayed methods of discovery, and efforts continued with Mill and Boole. Peirce 
introduced randomization in experimental design.1 Discovery was a central project of philosophy. That 
ambition came in the 20th century to be called finding a “logic of discovery.”

John Rawls, of all people, succinctly announced the death of the project: “There are…no precisely 
describable methods of discovery.”2 It is unclear just what Rawls, or anyone, meant by “precisely describable 

1 Pierce and Jastrow, “On Small Differences in Sensation.”
2 Rawls, “Outline of a Decision Theory for Ethics.” 
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methods of discovery,” but Rawls was just following the crowd. Karl Popper had titled his famous book 
The Logic of Scientific Discovery and in its first pages announced there can be no such thing. Carl Hempel 
announced that algorithmic science—science by computer—is impossible. Further, he claimed, the notion 
of truth is useless in science and so there is no point seeking for methods that can find it.3 Scientists 
should seek explanations, not truths. Hans Reichenbach4 insisted on a distinction between the “context of 
discovery” and the “context of justification” in science. Whatever Reichenbach meant by the distinction, 
it was widely accepted as the principle that warranting a particular hypothesis can be algorithmic, but 
generating hypotheses likely to be true cannot be. The canon of philosophy of science was revised: Newton, 
the Natural Philosopher, no longer counted as a philosopher, he became instead the subject of philosophy. 
Except for his algebra, Boole was quietly shuffled out of the philosophical listings. For Kant and the neo-
Kantians—Russell, Popper, Hempel, Reichenbach—and those they taught, philosophy’s connection with 
the sciences was to provide reconstruction and justification, not guides to inquiry.5 

There were and continue to be meta-methodological discussions in philosophy of science, but they 
did not engage Rawls’ dictum. Late in the 20th century there were challenges to Rawls’ opinion from Paul 
Thagard,6 Kevin Korb7 and others, but Rawls’ view still reigns in philosophy, sufficiently that with some 
justice physicists8 have claimed philosophy of science has nothing to offer the enterprise of science. 

2  Unpacking
It is not so clear just what Rawls and his contemporaries were denying. Absent the probabilities, and 
remembering that they were addressing human psychology rather than logical possibility, both Locke 
and Descartes seem to have envisioned some conception of rules for turning sensation into abstract 
generalizations. Bacon gave a general description of criteria establishing causes from data, but no 
algorithm for searching through data to find the relationships that would satisfy his criteria. Leibniz, as did 
Boole much later, seems to have imagined a human procedure of discovery aided by algebraic rules. Rudolf 
Carnap9 imagined an “inductive robot” collecting data and computing posterior probabilities as it saunters 
through the world. The robot begins with prior probabilities over a tabula rasa that lists all properties and 
all possible relations among them but nothing of their empirical instantiations. Were it possible, would 
a “logic of discovery” take singular premises and generate general conclusions certain to be true if the 
premises were? No modern since Hume thought that possible. Would a “precise method of discovery” 
instead be only an algorithmic procedure guaranteed to produce plausible or probable explanations? 
Was a single method envisioned that would be applicable to every domain, or as Rawls’ plural “methods” 
suggests, possibly distinct methods for different branches of inquiry? 

The very possibility of an algorithm or algorithms for turning data into generalizations was not really the 
cynosure of the doubts. It is easy enough to contrive some algorithm for turning data into generalizations. 

3 Jeffrey, Carl G. Hempel.
4 Reichenbach, Experience and Prediction.
5 The question of why in the late 19th century and after Anglophone philosophy turned away from methodological contributions 
to other topics deserves some serious but so far unreceived intellectual and social history. We can only conjecture an outline. 
At the turn of the century, Britainic and Continental philosophers with mathematical and scientific training and interests 
were educated in versions of Kantian doctrine and in its presupposition that the philosophical task is to justify science, not to 
contribute to it. Russell, Reichenbach and Carnap all wrote doctoral theses in this neo-Kantian vein. They were soon captivated 
by Frege’s example in attempting to formalize the notion of proof, which they took as a model for philosophy. A logic of 
discovery would turn singular data into a proof of general propositions, and that was plainly not possible. The replacement 
of the apparently certain Newtonian theory of kinematics with special relativity sealed the case. The emigration of continental 
philosophers to Anglophone countries brought with it their conception of the limits of philosophy. Placed in influential 
institutions, they taught generations of students. In twain, by the 1980s statistics and computer science had become more 
interesting and more rewarding for those with mathematical abilities and methodological concerns. 
6 Thagard, Computational Philosophy of Science.
7 Korb, “Introduction: Machine Learning as Philosophy of Science.”
8 Weinberg, Dreams of a Final Theory.
9 Carnap, “The Aim of Inductive Logic.”
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What was doubted was that there could be such procedures whose capacity to generate true generalizations 
could be warranted. Not perhaps warranted against Hume’s radical skepticism, but at least warranted in 
something like the un-philosophical way that we take experiments to warrant causal conclusions, or the 
observations of the planets to warrant Kepler’s laws. Fundamentally, what was deemed impossible is the 
creation of methods that are automatic and trustworthy but fallible guides to finding true hypotheses. 

Ronald Fisher’s10 creation of modern frequentist statistics was a limited method of discovery requiring some 
external source of hypotheses and data. Given a hypothesis and sample data for the variables the hypothesis 
relates, Fisher provided algorithmic methods for assessing the hypothesis. The methods carried probability 
guarantees for truth guidance under specifiable assumptions. The guarantees were of two kinds, asymptotic 
and finite. The asymptotic guarantees were that were data to be acquired to infinity from the same system or kind 
of system with the same likelihood for a sample unit, and the statistical method applied with each new datum, 
the conclusions of the method (e.g., parameter estimates or decisions to reject a hypothesis) would converge (in 
probability) to the truth. In statistical parlance, the methods are consistent. There is an abundance of convergence 
criteria, but only “uniform convergence” guarantees the existence of calculable error probabilities for inferences 
from finite samples. Statistics developed lots of uniformly convergent estimators and tests with accompanying 
error measures for correlations, partial correlations and a multitude of other quantities.

Although 20th century philosophers of science seem not to have closely followed developments in 
statistics, they surely had a general familiarity. Nonetheless, their skepticism about the possibility of a 
“logic of discovery” was not assuaged. What was missing was an algorithm, or algorithms, for generating 
the hypotheses to be tested so that, for the most part, the tested hypotheses are true. That was what Rawls 
announced cannot be, and statistics provided no refutation. 

3  The emergence of search methods
Algorithmic methods for searching for relationships that indicate causes or allow the identification and 
classification of phenomena were proposed early in the 20th century, notably in factor analysis. They lacked 
any demonstrations that they are truth guiding even in the infinite limit. By the latter part of the century, 
a variety of machine learning methods for identification or classification had appeared, including support 
vector machines, neural networks of many kinds, and more recently, “deep learning”—essentially multi-
layered neural networks. Some of them carried asymptotic correctness and finite sample error guarantees 
under specified assumptions. At the end of the century, philosophers working outside of conventional 
statistics developed algorithmic methods for searching through data for causal relations represented 
as directed graphs, with proofs of their correctness in the large sample limit. These methods, however, 
are without finite sample error probabilities. Almost unnoticed, some of these developments refuted 
philosophical announcements of impossibility. Shadowing the spirit of Hegel’s claim that more than six 
planets is impossible, Hempel had claimed that algorithmic science is impossible. His argument was that 
scientific theories contain quantities that are not directly measured—“theoretical quantities.” Obviously, he 
claimed, no computer could find such quantities and their roles. To the contrary, Peter Spirtes’ Fast Causal 
Inference (FCI) algorithm11 showed the possibility of identifying the presence of unobserved causes. Related 
developments showed that in some circumstances (chiefly linearity, homogeneity of the sample, and 
appropriate sampling) information could be obtained even about the causal relations among unobserved 
variables inferred from data. These efforts provided methods for searching over small numbers of variables 
for true hypotheses. That idea spread in the ensuing decades, with hundreds of proposed algorithms12, 

10 Fisher, The Design of Experiments; and Statistical Methods for Research Workers.
11 Spirtes, et al., Causation, Prediction and Search.
12 The literature on causal search is scattered over many journal articles and arXiv submissions. There is no up-to-date 
text or adequate survey. The interested reader may consult Spirtes, op. cit., 2nd edition, which is now almost 20 years behind 
developments, the proceedings of the conference on Uncertainty in Artificial Intelligence, the websites of Peter Spirtes  
https://www.cmu.edu/dietrich/philosophy/people/faculty/spirtes.html and Kun Zhang https://www.cmu.edu/dietrich/philosophy/
people/faculty/zhang.html, and their Google Scholar entries, and the Center for Causal Discovery https://www.ccd.pitt.edu/

https://www.cmu.edu/dietrich/philosophy/people/faculty/spirtes.html
https://www.cmu.edu/dietrich/philosophy/people/faculty/zhang.html
https://www.cmu.edu/dietrich/philosophy/people/faculty/zhang.html
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some of them with proofs of convergence to the truth under specifiable assumptions that did not restrict 
a priori the topic of theories or their causal relations. Various difficulties, such as the need for assuming 
all data analyzed are from a common causal structure, the presence of measurement error, and the use of 
multiple data sets, fell away or are falling. 

Despite the plethora of search algorithms that have emerged in the 21st century, and despite that many 
of them have asymptotic consistency proofs, only one of them to our knowledge has a uniform consistency 
proof and hence allows estimates of errors in inferences from finite samples.13 But the algorithm is so 
computationally and statistically demanding that it can only be used for a handful of variables.

4  The Big Data problem
“Big Data” are nothing new. Data collection has been going on in astronomy, the original science, almost 
since the beginning of recorded time. Kepler had a multitude of measurements of the positions of the 
planets, and worked through them to the ellipse. Darwin had a host of diverse data that he used to argue in 
a loosely Newtonian way for a grand theory of the common mechanism of the aetiologies of living forms. 
Perhaps the first successful statistical use of big data was Gilbert Walker’s identification early in the 20th 
century of the causes of the periodic failure of monsoons in the Asian subcontinent. Thanks to the rule of 
Britannia, Walker, an official in the Raj, was able to gather contemporary and historical weather reports 
from around the world. With a myriad of correlation analyses among variables he formed from the raw data, 
he settled on what we now call the “El Nino” phenomenon as the cause of monsoon failure.14 

The appearance in the 1990s of new methods to acquire data sets with enormous numbers of variables 
in astronomy, climate science, biology, neuroscience, and elsewhere, made obvious the inadequacy 
of the statistical mill. Measurements were acquired with sample sizes that were in many cases orders of 
magnitude smaller than the thousands upon thousands of measured variables. These developments 
fundamentally changed the structure of inference problems, especially in subjects that lack “ground 
truth” from experiments controlling the variables of interest. Big data posed the challenge of finding 
relations among a host of variables, often with no potential effect singled out a priori. With climate data 
the questions went beyond Walker’s ‘what are the teleconnections that account for the failure of monsoons 
to what are the teleconnections in the Earth’s climate?’ In neuroscience, imaging data provoked questions as 
to the signaling relations among thousands of small regions of the brain. In biology, the problems included 
finding the regulatory relations among thousands of genes and the influences of proteins on one another. 
No particular effect is specified in such questions; the task is to find the mechanisms among a horde of 
variables. That was the grist, and methods were needed to sift the true from the false among the almost 
uncountable numbers of hypotheses that could be formed from such variables. 

20th century statistics and philosophy had agreed that such problems were unsolvable. There were 
several reasons. One was sheer computational complexity. With even just a thousand variables, the number 
of possible causal structures among them is15 

9.34 x 10300728

How many of those could be put through the statistical mill of any data set, one at a time? Statistics 
provided methods that could separate wheat from chaff one grain, or a very few, at a time, but no efficient 
way to search through the grist to produce hypotheses worth testing, and no methods for assessing the 
body of results of such a search. Prior probabilities might somehow be put over such large dimensions, 
but it was (and remains) computationally infeasible to update on problems of that size. Even if some 
fraction of the possible causal models for such data sets could somehow be tested statistically, no error 

13 Spirtes and Zhang, “A Uniformly Consistent Estimator of Causal Effects.”
14 Walker, “Correlation in seasonal variations in climate (Introduction).”
15 This is the number of directed graphs on a thousand vertices, allowing direct cycles between vertices.
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probabilities are possible for the whole of the results, because almost certainly any model resulting from 
a search that specified hundreds or thousands of dependencies and independencies would be false 
somewhere. Statistical assessments of big data meet both complexity and the Preface Paradox: an author 
writes in the preface of a monograph that he believes all that is written in it, but also believes there are 
some errors. 

Whether causal information can be extracted for an entire body of data depends on the dimensionality 
of the data (measured in number of variables) and the complexity of the data generating system (measured 
in terms of the density of connections in the unknown, true causal graph), on the sample size, and on the 
speed of the algorithms. Most of the algorithmic methods that had been developed outside of conventional 
statistics for searching for causal relations from observed data were slow. They could feasibly address 
problems with only a few variables, and the time they required increased in the worst case exponentially 
with the number of variables and density of their connections. Developments in the 21st century have 
nonetheless produced faster algorithms, and improvements and parallelization have speeded up several 
older algorithms so that they can address data collections with thousands of variables and more. For 
example, Ramsey, et al.,16 recovered most of a sparse graph of a million variables from a sample of 1000 
measurements of each variable. But these algorithms are without finite sample error probabilities. Search 
was almost ready for big data. The essential problem was, and is, how to assess the accuracies of various 
search methods.

5  Assessing accuracies: the simulation solution
Plato, Sextus Empiricus, and, tracing them, Hume, emphasized the logical point that any finite sample has 
an infinity of logically consistent, distinct continuations. Statistics had met these arguments by moving 
from logical necessity to probability, whether in the Bayesian way or the frequentist. In the Bayesian way, 
assume an uninformative prior probability distribution and update as data are acquired. In the frequentist 
way, apply the appropriate statistical estimator or hypothesis test under assumptions that could themselves 
be tested. One could not have Cartesian certainty, but at least the probabilities of errors of inference could 
be known under assumptions that seemed minimal and testable and did not impose a priori restrictions on 
the substance of science, the causal claims at issue. But while these techniques could be used as steps in 
search algorithms, they do not apply to the entire results of searches through high dimensional data.

5.1  The simulation solution

In many cases, search requires a change in perspective: discovery becomes statistical distillation, and the 
assessment of a search method becomes its success in distilling true hypotheses from a huge receptacle of 
possibilities. Rather than assessing the truth of the entire output of a search algorithm that might return 
thousands of claims, one would like to assess the output by “precision,” the probability that returned 
hypotheses are true, and “recall, ”the probability that the true hypotheses are returned. Recall is of course 
a function of parameters of the data generating system. For example, within a linear system recall of 
causal relations will be a function of the absolute values of covariances between variables. In search for 
exoplanents, recall is a function of the luminosity of a star and the radius of its planet. Discovery becomes 
statistical chemistry: a mixed sample is distilled to a smaller sample with a much higher proportion of 
the desired component—in this case, truth. Chemists sometimes use multiple stages of distillation, and 
so sometimes do search algorithms with the use of resampling strategies that split a sample many times, 
and rerun a search over and over to find the most robust hypotheses. In statistical distillation, causal 
search algorithms were biased for sparsity of parameters (e.g., direct causal connections) by imposing a 
cost on introducing a parameter. In various ways, improved fit to the data provided by an extra parameter 

16 Ramsey, et al. “A Million Variables and More.”
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was traded against a cost for that addition. There were losses in sample recovery, and, as with separating 
alcohol from a mixture with water, some proportion of contaminants remained. 

How can the precision and recall of a search method for causal relations be assessed? How could 
a method of classification be assessed when little or no empirical “ground truth” is available? It could 
be checked whether a search method recovers the handful of relationships that might be known, and in 
some domains a few of the relationships inferred from a search method might be tested individually by 
experiment, but that is well short of estimates of precision and recall for a vast number of claims. The 
solution is simulation.

If we knew nothing about a domain, a great many random relationships with random associated 
probability distributions could be generated, a great many random samples of many sizes could be generated 
from them, a search procedure could be run and its precision and recall computed. We could at most sample 
a tiny fraction of the possible worlds. Fortunately, sometimes there is considerable information about a 
domain, for example motifs—typical sub-structures that compose systems in a domain. Known motifs can 
be used to produce relevant simulated data on which the precision and recall of a search method can be 
tested. And sometimes enough well-established theory is available to more precisely limit the relevant 
simulations.

5.2  Neuroscience

Functional magnetic resonance (fMRI) measures variations in magnetic susceptibility in brain tissues. Neural 
signaling requires oxygen, carried in hemoglobin. The magnetic properties of the hemoglobin molecule vary 
accordingly as it has an oxygen molecule as cargo, or does not. So physiological activity of tissues of the 
brain should vary with the relative concentration of deoxygenated versus oxygenated hemoglobin. It has 
been established that physiological activity in brain tissues is strongly correlated with blood oxygenation 
level fMRI measurements.17 We know the signaling connections in the brain are dense, especially locally; 
we know they have feedback relations sometimes represented by directed graphical cycles, and we know 
some feedback cycles reduce effects and some amplify effects. We also have good reason to think that the 
physiological variables we measure, for example in an fMRI scan, are approximately linear related and have 
non-Gaussian probability distributions.18 And we know the sample sizes obtained in an fMRI scan. That 
sort of information limits the possible worlds and possible samples that we need to explore. 

There are mathematical models of the generation of the data that fMRI records.19 The models allow 
specification of almost arbitrary causal structures represented by directed graphs. The models can be given 
parameter values so that they generate simulated data that closely matches empirically measured signals 
in their distribution properties. The idea is to simulate such data from the graphical motifs that are the most 
difficult to discover—positive and negative feedback cycles; feedback cycles intersecting feedback cycles; 
direct and indirect feedback cycles, and so on. Samples of sizes characteristic of fMRI studies are then given 
to various search algorithms and their precisions and recalls for recovering the underlying neural signaling 
structures in the simulations are computed. 

Recent work20 illustrates the strategy. Sanchez-Romero and colleagues generated simulated fMRI data 
from the structures shown in Fig. 1.

17 Vazquez, et al., “Neuronal and physiological correlation to hemodynamic resting-state fluctuations in health and disease.” 
18 Bijterbosh and Smith, Introduction to Resting State fMRI Functional Connectivity.
19 Penny, et al., Statistical Parametric Mapping.
20 Sanchez-Romero, et al., “Estimating Feedforward and Feedback Effective Connections…”
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Figure 1: Causal graphical structures used for simulation in Sanchez-Romero, et al., “Estimating Feedforward and Feedback 
Effective Connections…”

Altogether, they use 18 different models. For each model, 60 samples of the size obtained in typical fMRI 
studies (500) are generated. The average precisions and recalls of multiple search algorithms when applied 
to these samples are then calculated. They find that two of the algorithms they analyze have average (over 
all models) precisions of greater than 90%, with average recalls of 60% and 80%. The methods exploit the 
non-Gaussian features of the measured variables. They also find the precisions of these methods are robust 
to measurement error. In addition, Sanchez-Romero test the two best algorithms on simulated data based 
on experimentally known neural connectivities in macaques involving more than 90 variables.

5.3  Discovering exoplanets

When a planet transits between a star and the line of sight from the star to the Earth or to a satellite, 
the measured luminosity of the star is reduced. The reduction will be repeated with the periodicity of the 
orbit. So far, several thousand of these exoplanets have been found by searching for stars whose light 
is periodically reduced. This requires searching through hundreds of thousands of time series of stellar 
images for periodically dimming light. Not a job to be done by hand. EXPLORE21 is a program for doing the 
job by computer. The accuracy of the program is assessed by adding simulated stars to real images. Some 
of the simulated stars have light curves with transits simulating an occultation of a star by a planet. The job 
of the computer is to identify the stars with simulated planet transits. The simulated luminosities of stars, 
the size of the dimming (determined by the size of the planet, and the observed luminosity of the star) can 
all be varied. The results of applying the search algorithm to the images that combine real and simulated 
stars allow correction of the algorithm and recognition of the limits of the recall and precision of the search 
method. 

21 Lee, et al., “Scientific Frontiers in Research on Extrasolar Planets.”
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5.4  Dark matter astronomy

The hypothesis that the universe contains invisible matter emerged from estimates that galaxy clusters have 
insufficient visible mass to hold them together.22 The hypothesis has been supported and elaborated by 
measurements of the rotational velocities of spiral galaxies, whose speeds of rotation as a function of their 
distances from galactic centers is not accounted for by the estimated masses of the galaxies.23 This suggests 
that there is further, unilluminated matter—dark matter—distributed through and around the galaxies that 
accounts for the anomalies in rotational velocities. Dark matter does not absorb or emit electromagnetic 
radiation and can only be detected by its gravitational effects. It does not fit anywhere in the “standard 
model” of elementary particles, but is estimated to constitute as much as 85% of the material universe. 
Of natural interest are the locations and distributions of this mysterious substance in the observable 
universe. The detection of dark matter exploits the gravitational influence on light, called gravitational 
lensing, famously associated with the measurements of the deflection of starlight observed during eclipses, 
and of course with the development of the theory of black holes. In strong lensing, the light from more 
remote object passing by a more proximate object may be split so that two images of the remote object 
are observed. In weak lensing, when light from a galaxy passes through or near dark matter, its apparent 
shape is deformed by the gravitational influence of the dark matter on the light. In particular, the image 
may appear sheared out of an elliptical shape. Estimates of the distribution of dark matter are obtained by 
statistical analyses of such shape deformations from multiple images in a region as their light is passing 
near or through concentrations of dark matter. 

Identifying lensed images and their distortion by dark matter requires algorithmically estimating the 
ellipticities of many, many galactic images. A problem is to calibrate the errors in these estimates, since 
no empirical “ground truth” is available identifying galaxies lensed by dark matter. Ravanbakhsh, et 
al. remark that “In order to detect and/or calibrate any such biases, future surveys will heavily rely on 
image simulations, closely mimicking real observations but with a known ground truth lensing signal.”24 
The “known ground truth” is of course whatever model is used in generating the simulated data. They 
propose a method for simulating such data by using a deep learning algorithm to extract statistical features 
of available galactic images. They then use statistical/physical models incorporating those features to 
generate simulated images. The simulated images are used to test accuracies of identifications of galaxies 
whose light has suffered weak gravitational lensing. As with exo-planets, the simulation studies help to 
estimate the recall and precision of the search method.

6  Discussion
While the neuroscience and astronomy examples are technically quite different, they share the feature that 
the accuracies of search methods are assessed from data generated from simulated models of the system 
under study. The obvious objection to such methods is that there is no guarantee that the data generating 
process in simulation is faithful to the empirical data generating process. All that is done is to formulate a 
mathematical model of the process and show that the simulated data produced from it closely match the 
empirical data. There are notable examples where simulation testing of search methods has made major 
mistakes. One case is methods for discovering gene regulation, which used simulations that failed to capture 
features of the empirical measurement process that critically affected accuracies of search.25 Even granted 
the faithfulness of the mathematical models to the empirical data generating process and the measurement 
process, there is no guarantee that the simulations cover the range of variation in the natural phenomena. 

Ordinary experimental testing shares these features. An experiment aimed at estimating a causal 

22 Zwicky, “Die Rotverschiebung von extraglaktischen Nebeln” and “On the Masses of Nebulae and of Clusters of Nebulae.”
23 Ruben and Ford, “Rotation of the Andromeda Nebula from a Spectroscopic Survey of Emission Regions.”
24 Ravanbakhish, et al., “Evaluating Dark Energy Science with Deep Generative Models of Galaxy Images,” 1488.
25 Chu, et al., “A Statistical Problem for inference to Regulatory Structure…” and Wimberly, et al., “Problems for Structure 
Learning…”
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effect often assumes a mathematical model of the relationship, for example a linear model. Especially 
in experiments with human beings, generalizing estimates from the experimental population to new 
populations runs the risk that there are variations in the natural or social phenomena that are not realized 
in the experimental population, most obviously from variations in confounding variables that are not 
measured in the experiment. Addressing the problem of generalizing from human experiments requires 
large and diverse experimental samples and the measurement of more features of them than is customary 
in, say, psychological experiments. Addressing the problem of calibrating the accuracy of search algorithms 
for causal relations requires using a wide variety of structures and model parameters. Fortunately, in some 
cases, such as neural signaling connectivity, there are motifs, such as those in the Sanchez-Romero study, 
that are expected in the empirical domain and can be used to challenge search methods. In others, as in the 
astronomy examples, there is sufficient data and physical knowledge of the causal processes that generate 
the data to allow estimation of parameters for a simulation model. That creates a notable difference in the 
neuroscience and dark matter cases. In the neuroscience case, the procedure for warranting a method is not 
automated: the examples to be simulated and the ranges of parameters in simulations have to be humanly 
contrived with limited empirical guidance. In the dark matter case, the critical features of simulations can 
be automatically extracted from empirical data. 

Looking to our philosophical ancestors, Leibniz for example, the ambition to find a single method 
for all problems of empirical inquiry has not been realized, and we do not expect it to be. The two 
best methods Sanchez-Romero identified are flexible. One of them has been applied successfully (in 
unpublished work) to recovering experimentally known protein interactions from observational data and 
to recovering climate circulations from simulated data. The other has been applied to financial data. But 
they are scarcely universal. They assume the variables are non-Gaussian and the relationships are linear. 
Rawls’ pronouncement, however, was written in the plural, encompassing the possibility of different 
algorithms for different domains: there are, he announced, no precisely describable methods for discovery. 
Rawls was wrong. Model simulation done with sufficient care and attention to variety, supplemented with 
other evidence, can provide a basis for confidence in “precisely describable” methods of discovery. But 
procedures for evaluating search methods by simulations are themselves often not automated in selection 
of examples, and are without guarantees that they are representative. Developing formal, sensible measures 
of confidence in such circumstances is an interesting challenge, and that may be where “precision” really 
is impossible. 
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