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Abstract 

Beyond belief change and meme adoption, both genetics 

and infection have been spoken of in terms of information 

transfer. What we examine here, concentrating on the 

specific case of transfer between sub-networks, are the 

differences in network dynamics in these cases: the different 

network dynamics of germs, genes, and memes.   

 

Germs and memes, it turns out, exhibit a very different 

dynamics across networks.  For infection, measured in 

terms of time to total infection, it is network type rather than 

degree of linkage between sub-networks that is of primary 

importance.  For belief transfer, measured in terms of time 

to consensus, it is degree of linkage rather than network 

type that is crucial.   

 

Genes model each of these other dynamics in part, but 

match neither in full.  For genetics, like belief transfer and 

unlike infection, network type makes little difference.  Like 

infection and unlike belief, on the other hand, the dynamics 

of genetic information transfer within single and between 

linked networks are much the same.  In ways both 

surprising and intriguing, transfer of genetic information 

seems to be robust across network differences crucial for the 

other two. 

Information on Networks: Germs, Genes, 

and Memes   

Figure 1 shows a series of four network structures, clearly 

related in terms of structure.  The network on the left is a 

single total network. The three pairs on the right form 

paired sub-networks with increasing numbers of 

connecting links.  A quantitative measure is possible in 

terms of the number of actual linkages between nodes of 

distinct groups or sub-networks over the total possible.   

 Linkages between sub-networks have also been termed 

'bridges,' analogous to a concept of bridges in computer 

networking and identified in Trotter, Rothenberg and 

Coyle (1995) as a key area for future work in network 
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studies and health care. L. C. Freeman (1977) speaks of 

degree of linkage in terms of segregation and integration 

between sub-networks.   

 Our interest focuses on both types of sub-networks and 

the degrees of linage between them.  What we want to 

trace is the impact of those aspects of network structure 

on different mechanisms of information diffusion.   

 

 
 

Fig. 1  A single total network and increased degrees of 

linkage between total sub-networks 

 

 In the case of neither people nor animals do realistic 

social networks form a uniform and homogenous web.  

Social communities are composed of sub-communities, 

with varying degrees of contact and isolation between 

sub-communities in terms of the physical contact 

necessary for disease transmission, the sexual contact 

necessary for genetic mixing, and in the case of people the 

informational contact crucial to transmission of belief.   

 In the case of animals, sub-communities divided by 

geographical and ecological barriers are crucial in 

understanding both disease transmission and the genetics 

of speciation.  In the case of people, sub-communities are 

also divided along racial, ethnic, demographic, and socio-

economic lines.  In order to understand belief transfer we 

need to understand the impact of linkages between sub-

communities not only of physical contact but of 

communication and trust.   

 Our investigations began with network studies of disease 

and intervention.   Infectious diseases typically exploit 

social networks; influenza tracks contact networks, while 

sexually transmitted diseases track sexual networks.  

Genetic disorders and diseases can be thought of as 

percolating through genetic networks.  Interventions in 

human disease, on the other hand, typically attempt to 



influence behavior change by means of belief change.  

Health-care behaviors are as crucial in the pattern of any 

pandemic as are the biological characteristics of the 

pathogens involved (Epstein, Parker, Cummings & 

Hammond 2008; Auld 2003; Del Valle, Hethcote, Hyman, 

& Castillo-Chavez 2005; Barrett, Bisset, Leidig, Marathe, 

& Marathe 2009; Funk, Gilad, Watkins, & Jansen 2009; 

Hallett, Gregson, Lewis, Lopman, & Garnett 2007).   

 Health intervention can thus be seen as a battle on 

overlapping networks: we attempt to influence the 

dynamics of disease transmission across contact networks, 

for example, or genetic drift across genetic networks, by 

means of information transmission across communication 

networks.  In order to understand prospects for 

intervention, we need a better understanding of the 

dynamics of germs, genes, and memes across various 

types of network structures.  

 There is also a more abstract way of characterizing our 

investigations here: in terms of information transfer across 

networks.  Belief change is a clear candidate for 

information transfer across communication networks, at 

least if 'information' is drained of any implication of 

veridicality.  But it is also common to speak of genetic 

information encoded in DNA.  We can thus speak of the 

transfer of genetic information across networks of sexual 

mixing or hybridization. We can also think of the spread 

of an infection across a contact network as the spread of 

information contained in the pathogen at issue.
1
 Germs, 

genes, and memes can thus be seen as exemplifying 

different forms of information transfer across different 

kinds of networks.  In those abstract terms, our effort is to 

understand the dynamics of different strategies of 

information transfer across linked sub-networks.
2
   

A Litter of Linked Sub-Networks 

Figure 2 shows the types of linked sub-networks at issue: 

linked total networks, rings, small worlds, random and 

scale-free networks.  For simplicity we use just two sub-

networks of 50 nodes each; Figure 2 uses a smaller 

number of nodes merely for visibility.  Our rings use just 

one connection to a single neighbor on each side.  For 

small worlds we work with single rings in which roughly 

9% of nodes have been re-wired at random.  In our 

random networks roughly 4.5% of possible connections 

are instantiated in each sub-network.  Our scale-free 

networks are constructed by the preferential attachment 

algorithm of Barabási and Albert (1999).  Where needed, 

we add a minimal number of links to assure a connected 

                                                 
1  Indeed even memes are spoken of as going 'viral.' 
2 An expanded study would also include diffusion of innovation 

and marketing strategies across networks (Valente 1995; 

Goldenberg, Libai & Muller 2001; Garber, Goldenberg, Libai & 

Muller 2004;  Watts & Dodds 2007). 
 

network in each case; hence the 'roughly' of 9% rewired 

nodes and 4.5% of possible connections in the case of 

small world and random sub-networks.
3
   

 

 
Fig. 2  The network types at issue.  Simulation runs used 

sub-networks of 50 nodes; smaller numbers of nodes are 

used here merely for visibility.  

 

 We will also be working with single 100-node networks 

of each type in order to explore the effect of two aspects 

of network structure:  

 

 (a) network type—ring, wheels, hubs, small worlds, 

 random or scale-free 

 

 (b) degree of linkage between sub-networks. 

 

The idea is to use differences between results on single 

networks and on linked sub-networks in order to trace 

those aspects of network structure crucial to particular 
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results.  Where a result is similar across a single network 

of a particular type and linked sub-networks of that type, 

we have evidence that it is the network type rather than 

linkage that is important for that effect.  Where results 

differ in the two—particularly where results are similar 

between degrees of linkage and regardless of network 

type—we have evidence that it is the linkage between 

networks that is doing the work.   

The Dynamics of Infection 

How does the structure of linked networks affect the 

dynamics of infection across the network as a whole?  

How does the degree of linkage between networks affect 

the spread of infection? 

 It helps to start with analytic results, though we will 

quickly be forced to simulation.   

 Consider a pair of total sub-networks connected by a 

single bridge: two sub-communities that are optimally 

incestuous internally, but with the slimmest of 

connections between them.  And suppose a single 

individual in one community becomes infected.  Our 

assumption here and throughout will be of a pathogen 

with a 100% transmission rate—anyone he touches 

becomes infected as well.  How many steps to total 

infection across such network?   

 If our initially infected individual is on the 'outside' of 

one of the total sub-networks, away from the link, the 

answer is that infection will spread across the network in 

just three steps:  one to everyone in the sub-network, one 

across the bridge, and one to everyone on the  other side.  

 If the initially infected individual happens to be on the 

bridge, saturation occurs in only two steps.  The first step 

simultaneously infects everyone on his side and crosses 

the bridge to boot.  The second step carries the infection 

from the other side of the bridge to everyone over there. 

 Where n is the total number of nodes, the average 

number of steps to total infection in such a case is  

 
3�� − 2� +  4

�
 =   

�3� − 2�

�
  . 

 

What if we add more links?  All that is going to change is 

the chance that our 'randomly infected individual' is sitting 

on the bridge.  In all other cases, time to total infection 

will still be 3 steps. 

 Adding further links has no dramatic effect in such a 

case.  Because our sub-networks are totally connected, a 

first step in every case infects all nodes in a sub-network; 

from there any number of links merely transfer the 

infection to the second sub-network.  For a network with 

two sub-networks of equal size, incorporating n nodes and 

m discrete links between sub-networks (links sharing no 

nodes),
4
 the average time to total infection will be simply  
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As n increases relative to m ≠ 0, time to infection 

approaches a limit of 3.  As m increases relative to n, with 

a limit of m = .5 n, time to infection approaches a limit of 

2.  In all cases, however, variance in infection time will be 

just between 2 and 3 steps.   

 We suggested above a comparison with added linkages 

within a single network.  For a total network, of course, 

'added' linkages would simply be redundant, with no 

effect at all.  On a single total network, infection at the 

assumed rate will in all cases be in a single step.   

 Consider however a very different network structure.  

What if our sub-communities form not total networks, but 

rings instead?  Infection goes both ways from any starting 

point.  For infection to go to everyone on that ring, we 

need about 1/2 the number of nodes in that ring.  At some 

point, infection reaches a node on the bridge, which starts 

the same process on the other side.   

 Here variance in infection time is much greater.  Where 

s is the number of nodes for a sub-network, the maximal 

number of steps to full infection from a single node across 

a ring sub-network is s/2 where s is even, and (s – 1)/2 

where s is odd.  The longest time for diffusion across a 

network of two equal-sized rings each with an even 

number of nodes n/2 is therefore  

 
�

4
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Where the number of nodes n/2 in each sub-network is 

odd the maximal number of steps is 

 
�
2
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2
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�

2
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If the source of infection is one of the linked nodes, time 

to infection will be minimal: where n/2 is even the 

minimal time to infection will be 
�

�
+ 1 ; where n/2 is 

odd, time to infection will be  
�

�
+

�

�
  . 5 

 It is clear from even this simple comparison that 

variance between maximum and minimum times to total 

infection is extremely sensitive to the structure of sub-

networks.  In the case of total sub-networks, that variance 

is simply 1 regardless of the number of nodes.  In the case 

                                                 
4 In order to keep the outline of basic relationships as simple as 
possible we ignore the complication that links can share a single 
node at one end. 
5 We are grateful to Stephen Majewicz for some of the network 
analytic used here. 



of ring sub-networks, the variance is close to n/4.  

Consequences for prediction are clear: to the extent that a 

social network approaches a total network, point 

predictions of infection times can be made with a high 

degree of confidence.  To the extent that a social network 

approaches a ring, on the other hand, point predictions 

will not be possible without wide qualification.   

 Time to total infection is importantly sensitive to 

network structure.  It is not sensitive, however, to whether 

that structure is instantiated in a single network or in 

linked sub-networks.  Figure 3 shows simulational results 

for increased linkages between sub-networks. For each 

number between 1 and 50 we create 1000 networks with 

random links of that number between sub-networks, 

taking the average over the 1000 runs.   

 

 
 

Fig. 3  Average time to total infection with increasing 

links between ring, small world, random, scale-free, and 

total sub-networks 

 

 The line for total sub-networks appears at the bottom in 

Figure 3; in accord with our brief analytical discussion, 

the result is relatively flat.  For linked total networks, 

average time to infection across the network decreases 

only 2.98 steps to 2.35 with increased linkages from 1 to 

50.   

 Results for ring networks appear at the top of the graph.  

For ring sub-networks time to full infection decreases 

from an average of 38.1 steps for cases in which there is a 

single link between ring sub-networks to 7.6 for cases in 

which there are 50 links.     

 Results for small world networks (with 9% probability 

of rewiring) are shown in the second line from the top.  

Increasing linkages from 1 to 50 results in a decrease in 

steps to total infection from 22.5 steps to 7.45.  In the 

bottom two lines of the graph, virtually the same path is 

tracked by random networks (using 4.5% of possible links 

in each sub-network) and scale-free networks (Barabási 

and Albert preferential attachment).  Random networks 

decrease from 9.79 to 6.45, while scale-free networks 

decrease from 7.9 to 6.08.  

 For each network type we ran a parallel series in which 

additional links are added within a single network of a 

given structure rather than between sub-networks of that 

structure.  Results for single networks are shown in Figure 

4.   

 
  

Fig. 4  Average time to total infection with increasing 

links added to single ring, small world, random, scale-

free, and total networks 

 

 Figures 3 and 4 are virtually identical.  It is clear that 

network structure does make a significant difference in 

time to total infection.  But the fact that such a structure is 

instantiated in sub-networks rather than a single network 

does not make a difference.  In all the cases considered, it 

is not degree of linkage between sub-networks but the 

network structure involved in both single and linked sub-

networks that produces network-specific signatures for 

infection.  

 This largely accords with analytic results by Golub and 

Jackson (forthcoming) regarding the role of linkage in 

diffusion dynamics.
6
  What Golub and Jackson find, 

working solely with random networks, is that in the limit 

degree of linkage has no effect in the case of infection or 

diffusion, propagating by means of shortest paths; in such 

a case it is only over-all connection density that matters.  

What our results indicate is that such a result is by no 

means restricted to random networks, holding across 

network types quite generally.  Where infection is 

concerned, a prediction of time to total infection demands 

a knowledge of the general structure of contact network at 

issue—ring or total, for example, scale-free or random, 

but does not demand that we know whether it is a single 

network or a linked set of smaller networks of that same 

structure that is at issue.   

 The studies have employed an assumption of 100% 

infection—a disease guaranteed to be transmitted at every 

time-point of contact between individuals.  More realistic 

rates of infection of course affect the rates above, but in 

fact more pointedly emphasize the same points.    

                                                 
6 Golub and Jackson characterize their results using the term 

'homophily', defined in terms of the relative probability of node 

connection within as opposed to outside of a group or sub-

network.  For random networks, though not for other network 

structures, this corresponds to the degree of linkage between sub-

networks that is our focus here. 
 



 A more important proviso is that the measure employed 

throughout has been average time to total infection.  

Where average time to infection is our measure, degree of 

linkage between sub-networks as opposed to additional 

links within a single network of that structure is no

particular significance.  But this does not mean that the 

course of an epidemic across a single network and across 

sub-networks with various degrees of linkage is not 

significantly different.  That dynamics is often very 

different—in ways that might be important for 

intervention, for example—even where average time to 

total infection is the same.  Whereas time to total infection 

is robust across single and sub-networks, the temporal 

pattern of that infection is not.  The typical graphs in 

Figure 5 show the rate of new infections over time for (a) 

a single network and (b) linked sub-networks of that type.  

Single networks show a smooth normal curve of 

increasing and declining rates of new infection.  Linked 

sub-networks show a saddle of slower infection between 

two more rapid peaks.   

 

 

  
 

Fig. 5  Contrast in typical dynamics of infection in single 

and linked sub-networks, even where time to total 

infection is the same 

 

 Despite uniformity of predicted time to total infection, 

therefore, sparsely linked sub-networks will

fragile at those links, with temporal saddle points in the 

course of an epidemic to match.  Those weak linkages and 

saddle points offer crucial opportunities for targeted 

vaccination in advance of an epidemic, or intervention in 

the course of it. 
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Contrast in typical dynamics of infection in single 

networks, even where time to total 

Despite uniformity of predicted time to total infection, 

networks will always be 

fragile at those links, with temporal saddle points in the 

course of an epidemic to match.  Those weak linkages and 

saddle points offer crucial opportunities for targeted 

vaccination in advance of an epidemic, or intervention in 

The Dynamics of Belief 

Like germs, memes spread across social networks

the dynamics of this form of network information 

diffusion are dramatically different.  

has trumpeted similarities in infection dynamics and the 

spread of ideas (Newman 2001, Redner 1998, Börner et. 

al. 2003).  Our purpose is to emphasize crucial differences 

between them. 

 In this first model our agents' beliefs are represented as 

a single number between 0 and 1.  These are beliefs in the 

severity of a disease, perhaps, the probability of 

contracting the disease, or the effectiveness of 

vaccination. (Harrison, Mullen, & Green 1992; Janz & 

Becker, 1984; Mullen, Hersey, and Iverson, 1987; 

Strecher & Rosenstock, 1997).  Agents are influenced by 

the beliefs of those around them, updating their belief 

representation in terms of the beliefs of those with whom 

they are informationally linked.   

 To this extent we can argue that the model is relatively 

realistic: some beliefs can be represented on such a scale, 

and people are influenced to change those beliefs by, 

among other things, the expressed beliefs of those with 

whom they have contact.  What is admittedly unrealistic is 

the simple form of belief updating we u

averaging of current beliefs with those with whom one has 

network contact.  No-one thinks that averaging of beliefs 

in an informational neighborhood captures the real 

dynamics of belief change.  Such a mechanism does, 

however, instantiate a pattern of reinforcement: the more 

one's beliefs are like those of one's network neighbors, 

and the more they are like more of one's network 

neighbors, the less inclination there will be to change 

those beliefs.  The more one's beliefs are out of sync

one's neighbors, the greater the pressure there will be to 

change one's beliefs.   Our attempt is not to reproduce any 

particular pattern of realistic belief change but to 

emphasize the impact of certain predictable characteristics 

of belief change—with reinforcement a primary 

component—on the dynamics of belief

communication networks.
7
   

 Given belief averaging, and regardless of initial 

assignment of belief representations, all agents in this 

model eventually approach the same belief v

therefore measure the effect of network structure on belief 

convergence by measuring the number of steps required 

on average until all agents in the network are within, say, 

                                                
7 Centola and May (2007) consider 'complex contagions', in 
which more than one neighbor is required for infection.  This is 
not strictly speaking a reinforcement effect, but does show 
dynamics similar to that studied for belief reinforcement here
and a similar contrast with simple infection.  Golub and Jackson 
(forthcoming) outline analytic results on homophily in random 
networks, with a similar contrast between diffusion and belief 
averaging.  Our results extend that work
central contrast holds across networks 
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a range of .1 above or below the mean belief across the 

network as a whole.  In what follows we use this range of 

variance from the mean as our measure of convergence, 

averaging over 100 runs in each case.   

 We begin with polarized agents.  Half of our agents are 

drawn from a pool with belief measures that form a 

normal distribution around .25, with a deviation of .06.  

The other half are drawn from a pool with belief measures 

in similar normal distribution around .75.  In studying 

linked sub-networks our agents in one sub-network are 

drawn from the .25 pool; those in the other are drawn 

from the .75 pool.  In the case of single networks agents 

are drawn randomly from each pool.  We found belief 

polarization of this form to be necessary in order to study 

the effects of sub-network linkage in particular; were 

beliefs of all our agents merely randomized, convergence 

to an approximate mean could be expected to occur in 

each sub-network independently, and time to consensus 

would not then be an adequate measure of the effect of 

sub-network linkage. 

 In outlining the dynamics of infection we contrasted 

linked sub-networks of particular structures—ring, small 

world, random, total, and scale-free—with single 

networks of the same structure.  In exploring the 

dynamics of belief we will again study these types side by 

side.   

 Figure 6 shows graphs with indicating times to belief 

convergence for each of our network types, for increased 

linkages between sub-networks of that type (shown in 

blue) and increased linkages within single networks of 

that type (shown in red).   

 

 

 

 
 

Fig. 6  Times to belief convergence in various networks 

for increasing links between sub-networks (shown in blue) 

and within single networks of that type (shown in red). 

 

 The horizontal axis in each case indicates added links 

between 1 and 50.  The vertical axis varies in scale.  In the 

case of total and ring networks it extends from 0 to 800 

steps; in the case of small worlds it extends to 500 steps, 

with only 250 and 350 in the case of random and scale-

free networks.  The two facts that we want to emphasize, 

however, are (a) the extreme divergence between rates of 

belief convergence between linked sub-networks and 

single networks in each case, and (b) the remarkable 

similarity of the curves for linked sub-networks in each 

case. We emphasize that similarity by plotting results for 

all sub-network types in log-log form in Figure 7.   

 

 
Fig. 7   Log-log plots of times to belief consensus with 

increased linkages between sub-networks of various types 

 

 Where information transmission is a matter of memes 

rather than germs, linkage degree effects follow the same 

pattern regardless of the structure of sub-networks.  For 

meme transmission, unlike infection, it is degree of linkage 

that trumps network type.  If one wants to plot the course 

of an epidemic, we noted, it is crucial that one knows the 

structure of networks involved.  If one wants to plot the 

course of belief transmission, it is degree of linkages 

between sub-networks, of whatever type, that will be 

crucial.   

 As the differences in scale indicate, the particular 

structure of networks is important in order to gauge 

whether a single link between sub-networks will allow 

consensus in 250 steps or 700, as indicated for random and 

ring networks.  The pattern of changes in belief 

transmission with increasing linkages between sub-

networks from any initial point, however, is precisely the 

same regardless of network structure; the classic signature 

of power law distributions (Newman 2001, 2005).   

The Dynamics of Genetic Transfer 

Genetic information transfer is characterized by crossover 

from sexual reproduction, gene flow from different 



populations, and random mutation of genetic material. 

simulate this type of information transfer, 

agent a genetic code consisting of a binary string of length

100.  Half of the population starts out with a genetic code 

of all ones, the other with all zeros.  In the case of linked 

sub-networks, each sub-network begins with a uniform 

genetic code of this type.  In the case of single networks, 

we randomize the two codes across agents.  

 On each time step of the model, each agent pairs off 

with an unpaired agent she is connected to, if there is such 

an agent.  Each pair then mates.  Two new genetic codes 

are formed, each of which consists of code from one 

parent to the left of a random crossover point and code 

from the other parent to the right.  The production of the 

two codes only differs in the location of the random 

crossover point.  Parents are replaced by 

the new genetic codes but with the same 

connections.  The process can be thought of as 

reproduction within a population in which agents are 

replaced each round by their successors. 

 In the limit, this form of genetic updating will give us 

convergence of genetic codes in connected 

networks.  As the network converges, genetic information 

becomes more uniformly spread across the community, 

and we can therefore use time to convergence as a measure 

of the dynamics of genetic information. 

 An easy way to measure convergence in 

binaries would be to sum the ones of all strings and count 

the set of strings as converged when the sum for each 

string is within some chosen bounds

computationally cheap, however, such a measure would 

not adequately capture the idea we're after.  On this 

measure, an agent with a genetic code of fifty ones 

followed by fifty zeroes would be maximally close to one 

with fifty zeroes followed by fifty ones, though in fact 

those codes differ at every point.  A much better measure 

of genetic difference turns out to be Hamming distance

the number of places in which two codes differ.  

 Total convergence of a network might be 

that point when total Hamming distance is zero, i.e. when 

all agents have the same code.  Given the stochastic nature 

of our simulation, we use instead time to a certain 

Hamming threshold.  In particular, we take as our 

convergence measure that point at which two ag

randomly from the population can be expected to differ in 

less than 20% of their genetic code.
8
     

 If we think of germs, genes, and memes as strategies of 

information transfer across networks, which is the transfer 

of genetic information more like?  Do the dynamics of 

genetic information transfer more closely resemble those 

of infection, or of belief? 

                                                 
8 In its current form our genetic model does not implement 
mutation, which we expect would merely increase the 
stochasticity of results.  Issues of selection are among those raised 
in the conclusion as important areas for further work
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genetic code consisting of a binary string of length 

Half of the population starts out with a genetic code 

In the case of linked 

network begins with a uniform 

genetic code of this type.  In the case of single networks, 

codes across agents.   

On each time step of the model, each agent pairs off 

with an unpaired agent she is connected to, if there is such 

new genetic codes 

are formed, each of which consists of code from one 

the left of a random crossover point and code 

The production of the 

two codes only differs in the location of the random 

replaced by offspring with 

the new genetic codes but with the same network 

connections.  The process can be thought of as sexual 

in which agents are 

In the limit, this form of genetic updating will give us 

convergence of genetic codes in connected portions of 

As the network converges, genetic information 

becomes more uniformly spread across the community, 

and we can therefore use time to convergence as a measure 

n strings of 100 

binaries would be to sum the ones of all strings and count  

the set of strings as converged when the sum for each 

chosen bounds.  Though 

computationally cheap, however, such a measure would 

we're after.  On this 

an agent with a genetic code of fifty ones 

followed by fifty zeroes would be maximally close to one 

fifty ones, though in fact 

A much better measure 

of genetic difference turns out to be Hamming distance--

the number of places in which two codes differ.   

Total convergence of a network might be thought of as 

when total Hamming distance is zero, i.e. when 

all agents have the same code.  Given the stochastic nature 

of our simulation, we use instead time to a certain 

amming threshold.  In particular, we take as our 

measure that point at which two agents drawn 

randomly from the population can be expected to differ in 

If we think of germs, genes, and memes as strategies of 

information transfer across networks, which is the transfer 

Do the dynamics of 

genetic information transfer more closely resemble those 

In its current form our genetic model does not implement 
mutation, which we expect would merely increase the 
stochasticity of results.  Issues of selection are among those raised 
in the conclusion as important areas for further work.   

 The answer is that genetic mixing doesn't match either 

of the other patterns in all respects

intriguing features of each.   

 

 

Fig. 8 Generations to genetic convergence with a 

Hamming distance of 20% for increased linkages between 

sub-networks of various types.

 

 Figure 8 shows genetic dynamics results for linked sub

networks of each of our types.  Here, as in the case of 

belief, it is clear that network type makes very little 

difference.  For reasons we don't yet understand, our 

scale-free preferential attachment networks are the outlier.  

When that case is removed, the proximity of results for 

increased linkages and regardless of the types of sub

networks linked is even clearer.  Those results are shown 

in a re-scaled graph in Figure 9 and in log

Figure 10. 

 

 

Fig. 9 Generations to genetic convergence with a 

Hamming distance of 20% for increased linkages betwe

total, ring, small world and random sub

 

The answer is that genetic mixing doesn't match either 

in all respects, though it exhibits 

 

. 8 Generations to genetic convergence with a 

Hamming distance of 20% for increased linkages between 

networks of various types. 

ure 8 shows genetic dynamics results for linked sub-

networks of each of our types.  Here, as in the case of 

belief, it is clear that network type makes very little 

difference.  For reasons we don't yet understand, our 

free preferential attachment networks are the outlier.  

When that case is removed, the proximity of results for 

dless of the types of sub-

networks linked is even clearer.  Those results are shown 

scaled graph in Figure 9 and in log-log form in 

 

Fig. 9 Generations to genetic convergence with a 

Hamming distance of 20% for increased linkages between 

total, ring, small world and random sub-networks. 



 
Fig. 10  Log-log plot of genetic convergence for increased 

links between total, ring, small world and random sub-

networks. 

 

 Here, as in the case of belief, we have the signature of a 

power law, though the slope or scaling exponent is very 

different.  For genetics as for belief change--for genes, 

like memes--the differences in types of linked networks 

are of relatively minor importance. 

 In the case of belief, however, there was a remarkable 

difference between results for linked sub-networks and for 

single networks of a given type.  In the case of infection 

there was not; dynamics for infection on linked networks 

of a given type very much paralleled those for single 

networks with the same number of added linkages. 

 This aspect of infection dynamics reappears for the 

transfer of genetic information as well.  Figure 11 shows 

comparisons for our graph types between added linkages 

between networks (shown in blue) and within a single 

network of the same type (shown in red). 

 

  

 

 
 

Fig. 11  Times to genetic convergence in various networks 

for increasing links between sub-networks (shown in blue) 

and within single networks of that type (shown in red). 

 

 In Figure 11 only the case of total networks mirrors the 

radical difference in single and linked networks 

characteristic of belief change, and that is because 'added' 

links in a total network are simply redundant.  In all other 

cases single networks start with fewer generations to 

convergence, but after a very few number of added links 

the number of generations for single and linked sub-

networks track nearly identical paths.  In this regard the 

spread of genetic information is more like that of infection 

than belief change. 

 So do genes operate across networks like germs, or like 

memes?  The answer is that genes operate entirely like 

neither germs nor memes, but they do operate a bit like 

each.  In the case of belief transference it is linkage 

between sub-networks that is crucial, with types of 

networks linked of lesser importance.  In measuring time 

to total infection, it is network type that is far more 

important than degree of linkage.  In the transfer of 

genetic information, both aspects of networks--type and 

linkage--appear to be swamped in importance by the 

operation of the mechanism itself.  Increased linkages 

certainly do increase genetic spread, but in ways that do 

not depend on either the type of network at issue or 

whether those linkages are within a single network or 

between sub-networks.   

 It is important to emphasize that these are early results, 

suggestive but in need of further exploration.
9
  What the 

results suggest, however, is that the transfer dynamics of 

genetic information may be surprisingly robust across 

network differences, insensitive to network factors that 

play a major role in the transfer of infection and belief. 

Conclusions and Future Work 

 Our focus here has been on contrasting dynamics of 

transmission across networks, with an eye in particular to 

the case of transmission across links between sub-

networks.   

 For both people and animals, communities of 

interaction are composed of sub-communities with 

varying degrees of contact and isolation.  Different types 

of network are at issue for different forms of transmission, 

of course; it is contact networks that are important for 

disease transmission, sexual or genetic networks that are 

at issue in genetic recombination, and communication 

networks that facilitate belief transmission and change in 

people.  What we have tried to trace are the dynamic 

signatures of different kind of transfer on a range of 

networks. 

                                                 
9 It will be important to see how these results on genetic transfer 
hold up for modeling variations that incorporate mutation, 
different forms of encoding of different lengths, and different 
patterns of generation replacement, for example. 
 
 



 In the abstract, each of these might be considered a 

form of information transfer.  Belief change is a clear 

paradigm of information transfer, but it is also common to 

speak of transfer of genetic information.  We can thus 

speak of the transfer of genetic information across 

networks of sexual mixing or hybridization.  The spread 

of a disease across a network can be seen as the spread of 

information contained in the pathogen at issue. 
 Thought of in these terms, what our results indicate is 

that information dynamics are not all alike.  The specifics 

of information transfer on networks will depend crucially 

on the type of information at issue and the specific 

mechanisms of transfer.  Indeed what aspects of network 

structure are crucial for a particular kind of information 

transfer will depend on the particular kind of information 

and specific transfer mechanisms at issue. 

 If we think in terms of information, however, there is 

one major factor that is not included in our models here.  

Tracking that further aspect is planned as the next step in 

our research.  Information produces certain effects and 

serves certain ends.  Information in general, and each of 

the types of information considered here, is subject to 

selective pressure, typically conceived of in terms of 

fitness functions and payoffs.   

 A successful pathogen is one that effectively infects a 

host population so as to produce optimal reproduction and 

spread.  But germs must stop short of annihilating their 

host population, which would spell their own doom as 

well.  Successful interventions, on the other hand, are 

those that minimize or extinguish such a pattern of 

infection.  What forms of intervention best target what 

forms of infection on what kinds of networks?  What 

infection strategies, resistant to what forms of 

intervention, prove optimal for various types of network 

for each type of information under consideration? 

 Fitness functions are familiar in theoretical ecology and 

genetics.  Our aim will be to incorporate selective 

pressure in terms of fitness in these models as well.   How 

do selective pressures affect the different strategies of 

genetic recombination and asexual reproduction, for 

example, and on what kinds of networks?  Are there 

particular environments, or environmental interfaces, that 

are most effectively exploited by linked sub-communities 

or gene pools?  With an eye to both efficiency and 

resiliency, what genetic strategies prove optimal for what 

kinds of networks? 

 Just as genetics is tied to considerations of reproductive 

fitness, belief is tied to the selective pressures of truth and 

action.  Here, in ways explored in some of our other work 

already, we want to investigate the dynamics of belief-

formation strategies and the social networks on which 

they operate.  Some of the questions we are after are 

descriptive, again linked to questions of public health: 

What belief interventions might be most effective in 

influencing beliefs and behaviors across segregated sub-

communities with different levels of trust in particular 

information sources?
10

  Other questions are normative: 

What network configuration of what kinds of epistemic 

agents, for example, with what kinds of belief-revision 

strategies, can best navigate a particular epistemic 

landscape?
11

 

 Germs, genes, and memes can be considered families of 

information strategies played out on various forms of 

network.  The next step will be to investigate which forms 

of such strategies optimize which forms of fitness on what 

kinds of networks. 
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